
1 November 2000 Delphi Informant Magazine

November 2000, Volume 6, Number 11

Cover Art By: Arthur Dugoni

ON THE COVER
6 OP Tech
Moving Data via COM — Bill Todd
What do you do when you need to move data between a COM server and
a COM client? Mr Todd demonstrates how to simply stuff it in a variant,
and pass it as a parameter.

FEATURES
11 On Language
Polymorphic Programming — Jeremy Merrill
Unfortunately, we often run into barriers that prevent us from using
common forms of polymorphism. Mr Merrill shows us three ways to
break the VCL’s “protected barrier.”

15 On the ’Net
XSL Transformations — Keith Wood
Mr Wood introduces the XSLT language, its syntax, and semantics, then
shares an example program that combines an XML document and XSL
stylesheet to produce HTML.

20 Columns & Rows
A Practical Guide to ADO Extensions: Part II
— Alex Fedorov and Natalia Elmanova
Mr Federov and Ms Elmanova discuss OLAP, data warehousing, and
multidimensional data storage, then demonstrate ADO Multidimensional
programming with Delphi.

26 In Development
Children of Threadmare — Nikolai Sklobovsky
Having demystified multi-threading at the abstract level, Mr Sklobovsky
shares a multi-purpose Progress dialog box component, and some other
concrete tools and techniques.

REVIEWS
33 VMware 2.0
 Product Review by Bill Todd

36 UIL Security System 2.0
 Product Review by Warren Rachele

DEPARTMENTS
2 Delphi Tools
5 Newsline
39 Best Practices
41 File | New by Alan C. Moore, Ph.D.

2 November 2000 Delphi Informant Magazine

Delphi

T O O L S

New Products
and Solutions

Building Linux Clusters
David HM Spector

O’Reilly & Associates

ISBN: 1-56592-625-0
Price: US$44.95

(332 pages, CD-ROM)
Web Site: http://www.oreilly.com
Tenon Announces iTools for Linux

and support sophisticated net- mod_perl support. All tools are
 Tenon Intersystems

announced iTools for Linux,
its suite of Internet tools for
the Linux operating system
designed to simplify Apache
configuration and mainte-
nance. iTools extends and
enhances Linux’s networking
performance, efficiency, ease-
of-use, and functionality with
a family of tools essential to
commercial content delivery
and e-commerce.
 iTools complements and
extends the open source soft-
ware that is included with
Linux, and makes it easier
for Webmasters to set up
 ProWorks LLC announced the
work servers. iTools, based on
open-source implementations of
Apache, DNS, FTP, and send-
mail, is created and maintained
by software developers world-
wide. Using it as a point-of-
departure, iTools extends the
underlying architecture with a
point-and-click interface and
a set of new features. iTools
includes a fully customizable,
anywhere, anytime WEBmail
server, a two-tiered-certificate-
savvy SSL encryption engine to
support e-commerce, a caching
engine with proxy support, a
search engine, and FastCGI and
supported using a point-and-
click, browser-based adminis-
tration tool, enabling system
administrators and Webmasters
to manage their Web servers
remotely using any Internet
browser.
 iTools runs on Linux PPC
1999/2000, Terra Soft’s Yellow
Dog Linux Champion Server
1.1/1.2, and Red Hat Linux 6.1
for Intel.

Tenon Intersystems
Price: US$199 (introductory price).
Phone: (800) 662-2410
Web Site: http://www.tenon.com
Paradigma Announces Valentina COM

 Paradigma Software
announced Valentina COM,
the implementation of the
Valentina object relational
database for users of COM-
compliant development envi-
ronments. With Valentina
COM, developers that use
COM-compliant development
environments, such as Delphi
and Macromedia Authorware,
can embed Valentina COM
into their applications.
 Valentina implements the
object-relational (OR) data
model (a theoretical develop-
ment of Paradigma), which is
an extension of the traditional
relational data model. The OR
model embeds the relational
model as an exact subset. Every-
thing that works in a relational
database management system
(RDBMS) must work in Valen-
tina, so you can smoothly switch
from the familiar RDBMS
model to the Valentina model.
 Valentina databases support
generic BLOb fields as well
as two special BLObs: BLOb-
TEXT and BLOb-Picture fields.
You can automatically utilize
JPEG compression to maximize
storage of graphics and create
cross-platform graphics
databases suitable for use on the
Internet.

Paradigma Software
Price: US$199.95
Phone: (503) 520-0191
Web Site: http://www.paradigmasoft.com
ProWorks Releases Flipper CAD Control 2.5
release of Flipper CAD Control
2.5, the newest version of
the company’s ActiveX drawing
control (.DLL) that adds a
two-dimensional drawing canvas
to any program that supports
ActiveX/COM technology.
 An assortment of shape
types can be drawn and manipu-
lated, including line, rectangle,
ellipse, polyline, polygon, free-
hand, spline, arc, pie slice,
chord, text, bitmap, and more.
Shapes can be combined into a
group object, which is useful for
creating more complex objects.
 The drawing canvas is made
up of one or more layers, which
are transparently stacked on top
of each other. Each layer can
have unique pen and brush set-
tings. In addition, developers
can modify layer settings to limit
the amount of interaction the
user has with shapes. Shape dis-
play, moving, and resizing can all
be turned on or off.
 Flipper CAD Control can be
embedded in a client Web
page and can load CAD
drawings and DXF files from
a server across the Internet.
Included with this version is
a signed .CAB file, allowing
client machines to download
a run-time version of the con-
trol for use on a Web page.
The control also integrates into
ASP pages. Flipper CAD Con-
trols’ integration with run-time
dialog boxes provides a GUI for
editing layer and shape proper-
ties.
 A variety of mouse pointers for
various actions within the con-
trol are provided. Custom mouse
pointers can be loaded into the
control as well.

ProWorks LLC
Price: US$349
Phone: (541) 752-9885
Web Site: http://www.proworks.com

http://www.tenon.com
http://www.paradigmasoft.com
http://www.proworks.com

3 November 2000 Delphi Informant Magazin

Delphi

T O O L S

New Products
and Solutions
InstallShield Unveils InstallTuner for Windows Installer
e

 InstallShield Software Corp. specify properties for the Win-

unveiled InstallTuner for Win-
dows Installer, the company’s
latest advancement in software
customization for network pro-
fessionals deploying Microsoft’s
Windows Installer applications.
 InstallTuner is specifically
designed for network admin-
istrators who need to modify
Windows Installer applications
(.msi) for customized deploy-
ment to end users using a
simple GUI-driven, administra-
tor-focused environment.
 Key features include pre-vali-
dation of the original MSI
package, which validates that
.msi packages comply with
Microsoft’s Windows 2000 logo
criteria before customization;
setup organization, which allows
administrators to set product
properties such as the destina-
tion variable or the destination
directory, set application fea-
tures, and decide how features
will be presented to the end
user in the Custom Setup dialog
box; target system configuration,
which provides the ability to
add additional files and modify
existing registry information to
an .msi-based installation; appli-
cation configuration, which pro-
vides the ability to add or
modify properties that affect the
application setup, as well as
dows 2000 Add/Remove Pro-
grams applet in the Control
Panel; post-validation, which
allows validation of the Win-
dows Installer package in con-
junction with any modifications
made via InstallTuner trans-
forms; and the table viewer,
which opens Installation Devel-
opment Environment tables for
Windows Installer packages and
displays both standard tables
and custom tables.

InstallShield Software Corp.
Price: Not available.
Phone: (800) 374-4353
Web Site: http://www.installshield.com
VideoSoft Announces VSVIEW 7.0

column spanning (cell merging),
 VideoSoft announced the

release of VSVIEW 7.0, the
latest version of its Visual
Basic printer engine replace-
ment. VSVIEW 7.0 allows
developers to add print preview
features to Windows-based appli-
cations.
 VSVIEW 7.0 includes full
export support to RTF and
HTML while retaining all para-
graph and font formatting. The
HTML export filter also allows
for paged HTML output to
generate a series of hyperlinked
pages.
 Other new features of
VSVIEW 7.0 include URL
Download, which allows users
to download documents on a
Web page directly into a Web
browser for printing on a local
or network printer; expanded
table support, which allows the
creation of tables with rows
that span page breaks, row and
vertical text in table cells, and
custom borders on a per-row/-
per-column basis; improved doc-
ument navigation; new printer
options, which allow improved
scaling, cropping, and align-
ment; and retained styles.

VideoSoft
Price: US$299
Phone: (888) ACTIVEX or (510) 595-2400
Web Site: http://www.videosoft.com
non-technical contributors, as
 Starbase Corp. announced and improving and a
Starbase Announces StarTeam Web Edition
StarTeam Web Edition, which
enables direct access to soft-
ware and Web development
projects from anywhere in the
world through a secure Web
browser. Web Edition expands
StarTeam’s solutions to new
areas of the business enterprise,
delivering productivity gains,
ccelerating
project release schedules.
 StarTeam Web Edition enables
team members throughout the
enterprise to collaborate during
the entire development process,
while allowing more users
greater access to project data
without increasing administra-
tion overhead. Technical and
well as partners, suppliers, and
customers, can deliver feedback
and suggestions into the same
system used by the development
team.
 Web Edition’s Internet-based
architecture provides secure
and efficient access to project
information across local area
networks, wide area networks,
and the Internet. Web Edition
utilizes industry-standard
encryption technology from
RSA Security, Inc. StarTeam
Web Edition provides five
levels of encryption, permitting
users to select varying degrees
of balance between security
and performance. StarTeam
Web Edition leverages Active
Server Pages technology.

Starbase Corp.
Price: Contact Starbase for pricing.
Phone: (888) 782-7700
Web Site: http://www.starbase.com

http://www.installshield.com
http://www.videosoft.com
http://www.starbase.com

4 November 2000 Delphi Informant Magazine

Delphi

T O O L S

New Products
and Solutions
Marotz Offers ASP Express

 Marotz, Inc. announced it

is offering ASP Express, free
of charge. ASP Express is the
 Mele Systems, LLC
company’s set of components
and tools intended to help
Delphi developers create data-

aware Internet appli-
cations. It relies on
the latest technolo-
gies supported on the
Microsoft Windows
platform: HTML,

XML/XSL,
MTS/COM+,
IIS, and ASP.
 ASP Express
includes more
than 30 Delphi
components for
advanced Web
development;

advanced data man-
agement technology
based on XML; a
drag-and-drop Web form
designer; property editors, wiz-
ards, and support utilities; stan-
dard COM+ components; an
HTML-rendering engine based
on XML/XSL transformations; a
standard security system; standard
Cascading Style Sheets; standard
ASP templates; advanced Web
session management; integration
with MTS/COM+ run-time
services; integration with IIS and
ASP; and sample applications.
 ASP Express applications
are accessible from any fourth-
generation browser.

Marotz, Inc.
Price: Free (without source code).
Phone: (619) 669-3100
Web Site: http://asp-express.com
devSoft Ships IP*Works! SSL V4

 devSoft Inc. announced it is
shipping IP*Works! SSL V4, a
new addition to its IP*Works!
Internet Toolkit. IP*Works! SSL
introduces SSL and Digital Cer-
tificates to the IP*Works! com-
ponents, providing secure Web
browsing, secure client, secure
server, secure mail, digital cer-
tificate management capabilities,
and more. This is a comprehen-
sive suite of royalty-free, SSL-
enabled components.
 IP*Works! SSL V4 consists
of four editions: Delphi,
C++Builder, C++, and ActiveX.
Each edition includes 11 com-
ponents for secure Internet
connectivity: HTTPS, SMTPS,
POPS, IMAPS, FTPS, LDAPS,
NNTPS, TelnetS, IPPortS,
IPDaemonS, and CertMgr. They
consist of security-enabled ver-
sions of the corresponding
components in the IP*Works!
Internet Toolkit. The Delphi and
C++Builder Editions include
native Delphi and
C++Builder VCLs fully inte-
grated with the Delphi and
C++Builder IDEs.

devSoft Inc.
Price: US$995
Phone: (919) 544-7770
Web Site: http://www.dev-soft.com
Mele Systems/Youseful.com Introduces YOUSEFUL 5.1
(Youseful.com) unveiled
YOUSEFUL 5.1, the newest edi-
tion of its Delphi-integrated soft-
ware deployment package.
 YOUSEFUL 5.1 features
include drag-and-drop for files;
file type associations; the ability
to create Windows 2000 hard
links during install; ADO via
mdac_typ.exe; a faster and more
reliable Registry Browser; the
ability to hit the D key
(instead of just the popup) in the
file lists to have all the selected
install files deleted; an added
RunParameters property to
TCustomInstallFile for the file if
it is an .EXE to run after install;
Windows NT and 2000 special
paths; the ability to password
groups in the install; and more.

Mele Systems, LLC
Price: US$159
Phone: (631) 300-5214
Web Site: http://www.youseful.com
 Kinook Software released ver- dows a
Kinook Releases Visual Build 2.0
sion 2.0 of Visual Build, a build
management application for Win-
nd Web developers. Visual
Build automates common tasks
that must be performed when
building software applications. It
can retrieve the latest source code,
initialize registry settings, register
components, build source code
projects, check in executables,
create installation files, and more.
It executes the steps that must be
performed over and over again,
while ensuring that all steps have
been successfully completed. If
any step fails, Visual Build pin-
points the error and continues
from the point of failure after the
problem has been corrected.
 Visual Build provides a Win-
dows interface, using tooltips
extensively. It offers built-in sup-
port for Borland development
tools, and can be integrated
with virtually any third-party or
home-grown tool.

Kinook Software
Price: US$79.95 per seat (up to five seats);
volume discounts are available.
Phone: (719) 599-0442
Web Site: http://www.kinook.com

http://asp-express.com
http://www.dev-soft.com
http://www.youseful.com
http://www.kinook.com

5 November 2000 Delphi Informant Magazine

News

L I N E

November 2000
Inprise/Borland CEO Unveils Macintosh Support

 Scotts Valley, CA — Inprise/-

nse applies
Borland interim president and
chief executive officer Dale
Fuller announced the company
will provide its JBuilder Java
development environment for
Apple Computer’s new Macin-
tosh operating system.
 The announcement was one
of several supporting the compa-
ny’s cross-platform approach to
create a Web-based infrastruc-
ture for the delivery of applica-
tions across the Internet. Project
Kylix, a high-performance native
rapid application development
tool to bring new and existing
applications to the Linux plat-
form, and the forthcoming inte-
gration of Borland’s Delphi into
the Inprise Application Server,
were also demonstrated.
 Mr Fuller said, “JBuilder will
provide full support for Apple’s
new user interface, Aqua, while
allowing Java developers on the
Apple platform to build cross-
platform pure Java applications.
This is the first Inprise/Borland
product to support the Macin-
tosh platform.”
 To learn more, visit
Inprise/Borland at
http://www.borland.com/, the
community site at http://
community.borland.com/, or
call the company at (800)
632-2864.
 Scotts Valley, CA — Inprise/- The open source lice
Inprise/Borland Introduces InterBase 6.0
Borland announced the avail-
ability of the source code for
InterBase 6.0, its cross-plat-
form, standard query language
(SQL) relational database man-
agement system. Binary for-
mats for the Linux, Windows,
and Solaris operating systems
are also available for download,
free of charge.
 InterBase 6.0 has been released
under a variant on the Mozilla
Public License V1.1. Developers
using InterBase under this license
can modify the code or develop
applications without being
required to open source them.
to all platforms.
 In addition to being the first
open source release of InterBase,
version 6.0 introduces a number
of new features, including new
data types (long integer, date,
time, and datetime), extended
SQL 92 compliance, an open
interface for defining new national
character sets, and performance
and security enhancements.
 Copies of the source code
and binary versions for Linux,
Windows, and Solaris are avail-
able at the Inprise/Borland Web
site at http://www.inprise.com/
interbase/.
Inprise/Borland Offers Fast Path to Creating E-commerce Sites

 San Diego, CA — Inprise/-
Borland announced its e-Com-
merce Framework Solution, an
integrated software and consult-
ing solution that allows small-
to mid-sized businesses world-
wide to deploy open and scalable
e-commerce sites, using Inprise/-
Borland’s technology.
 Written in Java and deployed
in an n-tier topology, the e-Com-
merce application is managed by
Inprise Application Server 4.0
and can be customized for multi-
lingual, multi-currency
implementation in weeks rather
than months. The CORBA
architecture delivers scalable,
high-availability solutions that
automatically load balance, both
locally and over a wide-area net-
work. The e-Commerce Frame-
work Solution, which is priced
based on client needs, is available
worldwide.
 e-Commerce Framework Solu-
tion offers the Firewall Broker
to manage security; Partition Ser-
vice for handling multiple clients
from a single hosting facility;
Language Service for automati-
cally loading correct languages for
clients; Session Service for unique
user session identification; Cart
Service for transient storage of
Web site shopping state informa-
tion; and much more.
 The Inprise/Borland Canadian
Web site http://www.borland.ca,
which was built using the
e-Commerce Framework, has
been processing transactions
since March 2000. The Cana-
dian site was developed using
JBuilder and VisiBroker for Java
3.4, is deployed using the Inprise
Application Server 4.0, and is
managed using Inprise AppCen-
ter 1.6.
 To learn more, visit Inprise/-
Borland at http://www.borland.
com/, the community site at
http://community.borland.com/,
or call the company at (800)
632-2864.
 Scotts Valley, CA — Inprise/- Inprise/Borland since May

Inprise/Borland Announces Results of Its 2000
Annual Meeting
Borland announced the results
of its 2000 Annual Meeting of
Stockholders, held in July at its
headquarters in Scotts Valley, CA.
 Dale L. Fuller, 41, and William
K. Hooper, 45, were re-elected
to the Inprise/Borland Board of
Directors by more than 95 per-
cent of the votes cast, and will
serve three-year terms, expiring
at the 2003 Annual Meeting of
Stockholders. Mr Fuller has been
a director of Inprise/Borland
since April 1999 and has served
as interim chief executive officer
and president of Inprise/Borland
since that time. Mr Hooper,
president of the Woodside Hotels
and Resorts Group Services
Corp. and Monterey Plaza Hotel
Corp., has been a director of
1999.
 The stockholders also over-
whelmingly approved an amend-
ment to Inprise/Borland’s 1997
Stock Option Plan to increase
the number of shares of
common stock that can be issued
under that plan by 2,000,000
shares, and an amendment to
Inprise/Borland’s 1999
Employee Stock Purchase Plan
to reserve for issuance pursuant
to such plan an additional
500,000 shares of common
stock.
 In addition, the stockholders
ratified the selection of Price-
waterhouseCoopers LLP to
continue to serve as Inprise/-
Borland’s independent auditors
for the fiscal year ending Decem-
ber 31, 2000.
Inprise/Borland’s InterBase
Ships with Cobalt Networks’

Server Appliance
Inprise/Borland announced that
InterBase 6.0 is shipping with
Cobalt Networks’ RaQ 4r, its

fourth-generation server appliance
for Internet and application ser-
vice providers. InterBase 6.0,
the open source version of

Inprise/Borland’s high-
performance, structured query

language (SQL) database,
enables Cobalt RaQ 4r users to

develop and deploy business-criti-
cal, Internet-based applications.
 RaQ 4r is a server appliance

with integrated development tools,
applications, and a database. As
part of RaQ 4r’s full suite of Inter-
net and application services, Inter-

Base 6.0 will help facilitate the
deployment of applications and
layered services over the Web.

 For more information on
Cobalt Networks, visit http://

www.cobalt.com.

http://www.borland.com/
http://www.community.borland.com/
http://www.community.borland.com/
http://www.inprise.com/interbase/
http://www.inprise.com/interbase/
http://www.borland.ca
http://www.borland.com/
http://www.borland.com/
http://community.borland.com/
http://www.cobalt.com
http://www.cobalt.com

6 November 2000 Delphi Informant Magazine

OP Tech
COM / Data Exchange / MIDAS / Delphi 5

By Bill Todd

Figure 1: The
Moving Data via COM
Using COM to Transfer Any Type of Data

What do you do when you need to move data — data not stored in a database
table — between a COM server and a COM client? Simply stuff it in a variant,

and pass it as a parameter. You can pass anything, from integer arrays to large binary
files, this way.
I’m not talking about using a MIDAS server and
client, but any COM server and client. Although
the techniques in this article will work with a
MIDAS server and client using the IAppServer
interface, they will work equally well between any
COM server and client, using any interface that
you can add methods to.

Passing Tabular Data
If you need to pass tabular data, the easiest thing to
do is put it in a ClientDataSet, and pass that. This
is demonstrated in the PassData sample application
that accompanies this article (see end of article for
download details). This application consists of a
COM server and a COM client.

The client’s main form, shown in Figure 1, contains
a Database, Query, DataSetProvider, ClientDataSet,
and DataSource connected to the DBGrid to display
the data in the DBDEMOS sample customer table.
The following is the Send Data button’s OnClick
event handler:
 COM client’s main form.
procedure TMainForm.SendBtnClick(Sender:

 TObject);
begin
 PassDataServer := CoPassData.Create;
 PassDataServer.PassData(CustCds.Data);

end;

The client application uses the server’s type library
interface unit so it can connect to the server by call-
ing the Create method of the server’s CoClass, and
assign the interface reference to the variable
PassDataServer. PassDataServer is declared as a private
member variable of the form, with a type of
IPassData. IPassData is the interface implemented by
the COM server. The second statement calls the
PassData method of the IPassData interface,
and passes the ClientDataSet’s Data property
as a parameter.

The following is the server’s PassData method:

procedure TPassData.PassData(CdsData:
 OleVariant);
begin
 with MainForm.CustCds do begin
 Data := CdsData;
 Open;
 end; // with
end;

This method takes a single parameter of type
OleVariant that’s used to pass the ClientDataSet’s
Data property from the client to the server. The
server application’s main form contains a
ClientDataSet, DataSource, and a DBGrid. The code
assigns the CdsData parameter to the ClientDataSet’s
Data property and opens the ClientDataSet, causing
the data that was passed from the client to appear in
the grid on the server’s form.

OP Tech
Note that the ClientDataSet in the server isn’t connected to a remote
server or provider in this example, but it could be.

Passing Flat-file Data
One of the neat things about MIDAS is that the data the MIDAS
server sends to the client can come from anywhere. It doesn’t have to
be stored in a database table. One of the techniques in the PassOther
sample application (also available for download; see end of article for
details) supplies data to the MIDAS client from a comma-delimited
ASCII file.

The easiest way to do this is to drop a ClientDataSet and
DataSetProvider on the server’s remote data module. Then use the
Object Inspector to edit the ClientDataSet’s FieldDefs property and
add the field definitions you need for your data. Next, write a
BeforeGetRecords event handler for the DataSetProvider that gets
the data, in this case from the ASCII file, and loads it into the
ClientDataSet. The DataSetProvider then gets the data from the
ClientDataSet and sends it to the client application in the normal
way. Figure 2 shows the BeforeGetRecords event handler.
7 November 2000 Delphi Informant Magazine

procedure TPassOther.TextProvBeforeGetRecords(
 Sender: TObject; var OwnerData: OleVariant);
var
 AFile: TextFile;
 FieldVals: TStringList;
 Rec: string;
begin
 FieldVals := TStringList.Create;
 try
 with TextCds do begin
 { If the ClientDataSet is active, empty it; otherwise
 create it using the FieldDefs entered at design
 time. Calling CreateDataSet creates the in-memory
 dataset and opens the ClientDataSet. }
 if Active then
 EmptyDataSet
 else
 CreateDataSet;
 { Open the ASCII file. }
 AssignFile(AFile, OwnerData);
 Reset(AFile);
 { Loop through the ASCII f ile. Read each record and
 assign it to the CommaText property of the
 TStringList FieldVals. This parses the record and
 assigns each f ield to a string in the StringList.
 Insert a new record in the ClientDataSet and
 assign the StringList elements to the f ields. }
 while not System.EOF(AFile) do begin
 Readln(AFile, Rec);
 FieldVals.Clear;
 FieldVals.CommaText := Rec;
 Insert;
 FieldByName('Name').AsString := FieldVals[0];
 FieldByName('Date').AsDateTime :=
 StrToDate(FieldVals[1]);
 FieldByName('Unit').AsString := FieldVals[2];
 Post;
 end; // while
 System.CloseFile(AFile);
 { Be sure to reposition the ClientDataSet to the
 f irst record, so the DataSetProvider will start
 with the f irst record when building its data
 packet to send to the client. }
 First;
 end; // with
 finally
 FieldVals.Free;
 end; // try
end;

Figure 2: The server’s BeforeGetRecords event handler.
The BeforeGetRecords event handler starts by creating a StringList,
named FieldVals, that’s used to parse the records from the comma-
delimited ASCII file. Next, it checks to see if the ClientDataSet is
active, and if so, empties it. If not, it calls CreateDataSet, which
creates the in-memory dataset using the FieldDefs supplied at design
time, and opens the ClientDataSet.

The AssignFile and Reset statements open the ASCII file. Notice that
the name of the file in the call to AssignFile is the OwnerData parameter
passed to the event handler. OwnerData is provided so the client can
pass any information it wants to the server by setting the value of
the OwnerData parameter in the client application ClientDataSet’s
BeforeGetRecords event. Because OwnerData is a variant, you can pass
any type of data, including a variant array of variants. This gives you
the ability to pass as many values of any type as you wish.

The while loop reads a record from the text file into the string variable
Rec, clears the StringList, and assigns Rec to the StringList’s CommaText
property. The demonstration application uses the following text, which
is in a standard comma-delimited ASCII file named Text.txt:

"Sherman T. Potter","1/23/1901","MASH 4077"
"B. J. Hunnicut","4/19/29","MASH 4077"
"B. F. Pierce","6/6/1928","MASH 4077"
"Margaret Houlihan","8/8/1930","MASH 4077"

When you assign a string to CommaText, it’s parsed on any commas
or spaces not enclosed in quotation marks, and each substring is
assigned to an element of the StringList. Next, the procedure inserts
a new record into the ClientDataSet, and assigns the values from the
StringList to the fields in the new record. Finally, the new record is
posted. Once the end of the text file is reached, a call to CloseFile
closes the ASCII file.

A call to the First method moves the ClientDataSet’s cursor to the
first record. This is critical because the DataSetProvider will start
with the current record when it builds the data packet to send to
the client. If you leave the ClientDataSet positioned on the last
record, the last record is the only one that will be sent to the
MIDAS client. Finally (literally finally), a call to the StringList’s
Free method destroys it.

On the client side, things are even easier. When you open the
ClientDataSet in the MIDAS client application, its BeforeGetRecords event
fires. The code for the client’s BeforeGetRecords event handler follows:

procedure TMainDm.TextCdsBeforeGetRecords(Sender: TObject;
 var OwnerData: OleVariant);
begin
 { Assign the f ile name to OwnerData which is passed to
 the MIDAS client automatically. }
 OwnerData :=
 ExtractFilePath(Application.ExeName) + 'text.txt';
end;

The only thing that happens here is that the name of the text file
is assigned to the OwnerData parameter. OwnerData is automatically
sent to the MIDAS server, where, as you’ve seen, it appears as a
parameter to the DataSetProvider’s BeforeGetRecords event. The result
is shown in Figure 3.

Sending a File You Don’t Want to Display
Using ClientDataSet is great for data you want to display on a form.
Suppose, however, that you need to send a file from a COM server

OP Tech

Figure 3: The text-file data as it appears in the demonstration
client at run time.

procedure TMainForm.CopyFileBtnClick(Sender: TObject);
const
 ArraySize = 20;
var
 VData: Variant;
 PData: PByteArray;
 S: string;
 ByteCount: Integer;
begin
 with MainDm.Conn do begin
 { Create the variant array of bytes that will hold the
 data read from the text f ile by the server
 application. }
 VData := VarArrayCreate([0, ArraySize - 1], varByte);
 { Allocate the string variable S to hold the number of
 bytes returned in the variant array. }
 SetLength(S, ArraySize);
 { Connect to the MIDAS server and empty the memo
 component. }
 if not Connected then
 Open;
 Memo.Lines.Clear;
 { Call the server's OpenFile method. This creates the
 TFileStream on the server that is used to read the
 f ile. The name of the f ile to read is passed as a
 parameter. }
 AppServer.OpenFile(ExtractFilePath(
 Application.ExeName) + 'text.txt');
 { Read data from the server until the entire f ile has
 been read. }
 while True do begin
 { Read a block of data from the server. GetFileData
 returns the number of bytes read. The parameter is
 a variant array of bytes passed by reference. }
 ByteCount := AppServer.GetFileData(VData);
 { If the number of bytes read is zero, the end of the
 f ile has been reached. }
 if ByteCount = 0 then
 Break;
 { Lock the variant array and get a pointer to the
 array values. }
 PData := VarArrayLock(VData);
 try
 { The read that reaches the end of the f ile may
 return fewer bytes than requested. If so, resize
 the string variable to hold the number of bytes
 actually read. }
 if ByteCount < ArraySize then
 SetLength(S, ByteCount);
 { Move the data from the variant array to the
 string variable. }
 Move(PData^, S[1], ByteCount);
 finally
 VarArrayUnlock(VData);
 end; // try
 Memo.Lines.Add(S);
 end; // while
 AppServer.CloseFile;
 end; // with
end;

Figure 4: The Copy File button’s OnClick event handler.
to its client, but you don’t want the file’s contents displayed in a
ClientDataSet.

It’s easy — even if you need to send a file that’s too large to fit
in memory. The File tab of the sample application, which contains
Button and Memo components, demonstrates this. Figure 4 shows
the code from the Copy File button’s OnClick event handler. This
procedure begins by declaring a constant, ArraySize, that determines
the size of the variant array used to transfer the file from the COM
server to the client.

This sample program displays the blocks of data read from the
server in the Memo component on the form (see Figure 5). In
an application where you are transferring a large amount of data,
and storing it in memory or writing it to a file, you would use a
much larger array (e.g. 4KB or 16KB) to transfer more data on
each call to the server.

The first statement creates a variant array, VData, with a lower bound
of zero and an upper bound of ArraySize-1, making it the same size
as ArraySize. The array is of type varByte, so it can hold anything.
Because we want to put the data into the Memo component, the
string of bytes returned from the server must be put into a string
variable, in this case S. The call to SetLength sets the size of S to the
size of the array. Next, the DCOMConnection component is opened,
and the Memo is emptied.

Transferring the file is accomplished by three custom methods, which
are added to the server application’s IAppServer interface using the
Type Library editor. The first, OpenFile, takes a single parameter, the
name of the file to be transferred. The while loop calls the second
IAppServer method, GetFileData. GetFileData passes the variant array,
VData, as a var parameter, and returns the number of bytes read from
the file. This will be the size of the array for every block except the
last one, which may contain fewer bytes if the file size is not an even
multiple of the block size. If the number of bytes returned by a call
to GetFileData is zero, the end of the file has been reached and the
while loop is exited.

The next step is to put the bytes returned in the array into the string
variable, S, and add the string to the Memo component. To access
the data in the variant array faster, the array is locked by the call to
8 November 2000 Delphi Informant Magazine
VarArrayLock(VData), which returns a pointer to the actual data array
in the variant. The pointer is assigned to the variable PData, which
is declared as type PByteArray. PByteArray is declared in the System
unit as a pointer to an array of type Byte.

The data is moved from the array to the string variable by calling:

Move(PData^, S[1], ByteCount)

The Move procedure copies a specified number of bytes from one
location in memory to another. The first parameter is the source

OP Tech

{ Reads a block of data from the TFileStream, Fs, into the
 parameter Data, which is a variant array of bytes.
location, the second parameter is the destination, and the third
parameter is the number of bytes to copy.

The ^ at the end of the pointer variable PData dereferences the pointer.
In other words, PData^ means “the location in memory which PData
points to.” Note that Move performs no error checking of any kind, so
be careful to use the correct parameters. Strange things will happen at run
time if you overwrite the wrong area of memory. In addition, Move does
not perform any type checking. You can move any bit pattern into a string
or any other kind of variable. Once the data has been moved from the
array to the string, the variant array is unlocked and the string is added to
the Memo. Once the entire file has been copied, a call to the third custom
method of IAppServer, CloseFile, closes the file on the server.

On the server side, the methods OpenFile, GetFileData, and CloseFile
were added to the IAppServer interface using the Type Library editor.
The following shows the code from the remote data module’s unit
for the OpenFile method:

procedure TPassOther.OpenFile(FileName: OleVariant);
begin
 { Create the TFileStream object in read mode. Allow other
 applications to read the text f ile, but not to write
 to it. }
 Fs := TFileStream.Create(FileName,
 fmOpenRead or fmShareDenyWrite);
end;

OpenFile contains a single statement, which creates a FileStream
object for the file passed as a parameter to the method. The file is
opened in read mode and is shared for reading, but no writing is
allowed. The FileStream is assigned to the variable Fs, which is a
private member variable of the remote data module.

Figure 6 shows the GetFileData method. This method expects a
single var parameter, which is the variant array of bytes passed by
the client. GetFileData locks the variant array for fast access, then
assigns the pointer returned by VarArrayLock to the local variable
PData. Next, it calls the FileStream.Read method, passing the address
PData points to as the location to store the data. It also passes
VarArrayHighBound(Data, 1) + 1 as the number of bytes to read, so
the number of bytes read is always equal to the size of the array.
The number of bytes read is assigned to Result, and returned by the
function. Finally, a call to VarArrayUnlock unlocks the variant array.
9 November 2000 Delphi Informant Magazine

Figure 5: The File tab of the sample application.
The following shows the CloseFile method, which frees the FileStream
object and sets its instance variable to nil:

procedure TPassOther.CloseFile;
begin
 if Assigned(Fs) then begin
 Fs.Free;
 Fs := nil;
 end;
end;

The OnDestroy event handler for the remote data module also frees
the FileStream if Fs is not nil, just in case the client program
doesn’t call CloseFile.

Although this example uses a MIDAS client and server, you can
use exactly the same technique to transfer a file from a COM server
to its client.

Sending Arrays or Other Memory Structures
You can also send an array, a Pascal record, or any other data
structure that exists in memory, by stuffing it into a variant array of
bytes. Figure 7 shows the GetArray and LoadVariantArray methods
of the sample MIDAS server. GetArray declares a 10-element inte-
ger array and loads it with the numbers 1 through 10. The client
application passes a variant, VData, as a var parameter. GetArray
calls LoadVariantArray and passes it three parameters.

The first parameter value, @IntArray, is the memory address of
the IntArray array. The “at” sign is the “Address of ” operator in
Pascal, so you can read @IntArray as “the address of IntArray.”
This provides LoadVariantArray with a pointer to the location in
memory where the integer array values are stored. The second
parameter value, SizeOf(IntArray), passes the size of IntArray in
bytes. The third and final parameter is the variant variable into
which the integer array will be loaded.

LoadVariantArray begins by calling VarArrayCreate, which creates
a variant array of bytes that’s the same size as the integer array
to be returned. Next, the variant array is locked, the integer array
is moved into it, and the variant array is unlocked. Notice that
the first parameter of LoadVariantArray, PData, is of type Pointer.
Using the generic Pointer data type means that you can pass the
 Returns the number of bytes read into the array. }
function TPassOther.GetFileData(var Data: OleVariant):
 Integer;
var
 PData: PByteArray;
begin
 { Lock the variant array and get a pointer to the array
 of bytes. This makes access to the variant array much
 faster. }
 PData := VarArrayLock(Data);
 try
 { Read data from the TFileStream. The number of bytes
 to read is the high bound of the variant array,
 plus one (because the array is zero-based). This
 function returns the number of bytes read. }
 Result :=
 Fs.Read(PData^, VarArrayHighBound(Data, 1) + 1);
 finally
 VarArrayUnlock(Data);
 end; // try
end;

Figure 6: The GetFileData method.

10 November 2000 Delphi Informant Magazine

OP Tech

procedure TPassOther.GetArray(var VData: OleVariant);
var
 IntArray: array[1..10] of Integer;
 I: Integer;
 PData: PByteArray;
begin
 { Put some numbers in the array. }
 for I := 1 to 10 do
 IntArray[I] := I;
 { Load the integer array into the variant array. }
 LoadVariantArray(@IntArray, SizeOf(IntArray), VData);
end;

procedure TPassOther.LoadVariantArray(PData: Pointer;
 NumBytes: Integer; var VData: OleVariant);
var
 PVData: PByteArray;
begin
 { Create the variant array of bytes. Set the upper bound
 to the size of the array, minus one, because the array
 is zero-based. }
 VData := VarArrayCreate([0, NumBytes - 1], varByte);
 { Lock the variant array for faster access. Then copy the
 array to the variant array, and unlock the variant
 array. }
 PVData := VarArrayLock(Vdata);
 try
 { Move the bytes at the location in memory that PData
 points to into the location in memory that PVData
 points to. PData points to the integer array and
 PVData points to the variant array of bytes. }
 Move(PData^, PVData^, NumBytes);
 finally
 VarArrayUnlock(VData);
 end; // try
end;

Figure 7: The GetArray and LoadVariantArray methods.

procedure TMainForm.CopyArrayBtnClick(Sender: TObject);
var
 IntArray: array[1..10] of Integer;
 VData: Variant;
 I: Integer;
begin
 { Connect to the server application. }
 if not MainDm.Conn.Connected then
 MainDm.Conn.Open;
 { Call the server's GetArray method and pass a variant
 parameter. }
 MainDm.Conn.AppServer.GetArray(VData);
 { Get the data out of the variant array. }
 UnloadVariantArray(VData, @IntArray, SizeOf(IntArray));
 { Display the array values in the memo. }
 for I := 1 to 10 do
 ArrayMemo.Lines.Add(IntToStr(IntArray[I]));
end;

procedure TMainForm.UnloadVariantArray(
 var VData: OleVariant; PData: Pointer;
 NumBytes: Integer);
var
 PVData: PByteArray;
begin
 { Lock the variant array, copy the data to the array, and
 unlock the variant array. }
 PVData := VarArrayLock(VData);
 try
 { Move the data in memory that PVData points to (the
 variant array data), to the location in memory that
 PData points to (the integer array). }
 Move(PVData^, PData^, NumBytes);
 finally
 VarArrayUnlock(VData);
 end; // try
end;

Figure 8: The CopyArrayBtnClick and UnloadVariantArray methods.
address of any type of variable, array, Pascal record, or any other
memory structure to this method. This makes LoadVariantArray
completely generic. It can be used to load anything stored in
memory into a variant array.

Figure 8 shows the OnClick event handler for the Copy Array
button in the PassOther sample application, and the UnloadVari-
antArray method that is called by the button’s OnClick event
handler. This method connects to the MIDAS server by calling
the Open method of the DCOMConnection component. It then
calls the GetArray method of the server, passing a variant variable
as its parameter.

Next, the OnClick event handler calls UnloadVariantArray, passing
it three parameters. The first, VData, is the variant array that
contains the values. The second, @IntArray, passes a pointer to the
location in memory where you want to place the bytes from the
variant array. In this case, the second parameter is the address of
the integer array IntArray. The third parameter value is the size
of IntArray in bytes.

UnloadVariantArray locks the variant array, and obtains a pointer
to its data. It then moves the data from the variant array to
the memory location pointed to by PData, the address of the
IntArray array, in this case. Finally, the variant array is unlocked
and the integers are displayed in the Memo component on the
form (again, see Figure 5).

Conclusion
The ability to pass a variant array as a parameter to a COM method
call lets you pass any kind of data between a COM server and
its client. While the examples in this article used a text file and a
variant array, the same methods will work for any kind of file or
data stored in memory. The methods used to transfer the text file
will work without change for any type of file, including binary files,
such as image files. The same is true of the code that transferred the
integer array. It will work equally well with a Pascal record, a multi-
dimensional array of doubles, or anything else stored in memory. In
short, you can put anything into a variant and transfer it to another
application using COM. ∆

The files referenced in this article are available on the Delphi Informant
Magazine Complete Works CD in INFORM\00\NOV\DI200011BT.

Bill Todd is president of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is co-author of four database program-
ming books, author of more than 60 articles, a Contributing Editor to Delphi
Informant Magazine, and a member of Team Borland, providing technical support
on the Borland Internet newsgroups. He is a frequent speaker at Borland Developer
Conferences in the US and Europe. Bill is also a nationally known trainer and
has taught Delphi programming classes across the country and overseas. He is
currently a speaker on the Delphi Development Seminars Kylix World Tour. Bill can
be reached at bill@dbginc.com. For more information on the Kylix World Tour,
visit http://www.DelphiDevelopmentSeminars.com.

http://www.DelphiDevelopmentSeminars.com

11 November 2000 Delphi Informant Magazi

On Language
Polymorphism / VCL / RTTI / Windows Messages / Delphi 5

By Jeremy Merrill

procedure TFor
var
 CanPaste: Boo
 Ctrl: TWinCon
begin
 Ctrl := Activ
 if (Assigned(
 Clipboard
 begin
 if (Ctrl
 CanPast
 else if (
 CanPast
 else if (
 CanPast
 else if (
 CanPast
 else
 CanPast
 if (CanPa
 TCustom
 end;
end;

Figure 1: This co
polymorphism.
Polymorphic Programming
Three Ways to Break the VCL’s “Protected Barrier”
Polymorphism is, in essence, the ability to treat different objects the same way. When
objects have something in common, we should be able to write code that makes use

of their similarities, i.e. we should be able to write polymorphic code. Unfortunately, we
often run into barriers that prevent us from using common forms of polymorphism.
This is the case when using many of the classes in
Delphi’s Visual Component Library (VCL). When
using VCL components, we often find ourselves
writing non-polymorphic code to access similar
functionality. For example, you may have written
code such as that shown in Figure 1.

With all the power of polymorphic programming at
our fingertips, why do we have to write such ugly
code? TEdit, TMaskEdit, TMemo, and TRichEdit all
descend from the TCustomEdit class. In addition to
being non-polymorphic, the code in Figure 1 can
only be used on these four, specific descendants
of TCustomEdit; everything else is excluded. The
ReadOnly property and the PasteFromClipboard
method are both defined in the TCustomEdit class. If
we can call the PasteFromClipboard method from the

m1.mnuPasteClick(Sender: TObject);
ne

lean;
trol;

eControl;
Ctrl) and
.HasFormat(CF_TEXT)) then

is TEdit) then
e := (not TEdit(Ctrl).ReadOnly)
Ctrl is TMaskEdit) then
e := (not TMaskEdit(Ctrl).ReadOnly)
Ctrl is TMemo) then
e := (not TMemo(Ctrl).ReadOnly)
Ctrl is TRichEdit) then
e := (not TRichEdit(Ctrl).ReadOnly)

e := False;
ste) then
Edit(Ctrl).PasteFromClipboard;

de functions, but it’s ugly because it cannot use
TCustomEdit level, why can’t we read the ReadOnly
property the same way? In an ideal, polymorphic
world, we should be able to write something like the
code in Figure 2.

The only problem with the code in Figure 2 is
that it generates a compile error: “Undeclared iden-
tifier: ‘ReadOnly’.” The reason is that TCustomEdit
defines ReadOnly as a protected property. While
this is done for a good reason — so descendant
classes can choose which properties to expose — it
gets in the way of writing polymorphic code. We
can call the PasteFromClipboard method from the
TCustomEdit level because it’s defined as public. It’s
only when we typecast the active control as a class,
where ReadOnly has been promoted to a higher
visibility, that we gain access to it.

To use the power of polymorphism in this example,
we need a way to break the protected barrier.

Breaking the Protected Barrier
Record-type definitions in Object Pascal can map
the same bytes in memory to multiple variables.
This is done using a special form of the case state-
ment, as shown in the TRect type declaration (see
Figure 3).

If we declare variable R as a TRect, R.Left refers
to the same integer, occupying the same bytes in
memory as R.TopLeft.x; and R.Bottom refers to the
same integer as T.BottomRight.y. Essentially, we’re
defining two memory maps for the same bytes in
memory.

Using a similar technique, we can use different
memory maps for the same object. Every object
is, at its lowest level, nothing more than a collec-
tion of bytes. An object’s class contains all the

procedure TForm1.mnuPasteClick(Sender: TObject);
var
 Ctrl: TWinControl;
begin
 Ctrl := ActiveControl;
 if (Assigned(Ctrl) and
 Clipboard.HasFormat(CF_TEXT)) then
 if (Ctrl is TCustomEdit) and
 (not TCustomEdit(Ctrl).ReadOnly) then
 TCustomEdit(Ctrl).PasteFromClipboard;
end;

Figure 2: Ideal, polymorphic code (which doesn’t compile).

TPoint = record
 x: Longint;
 y: Longint;
 end;

TRect = record
 case Integer of
 0: (Left, Top, Right, Bottom: Integer);
 1: (TopLeft, BottomRight: TPoint);
 end;

Figure 3: The TRect type declaration.

 4: Memory map of three objects descending from TCustomEdit.

TCustomRichEdit Fields

TCustomMemo Fields

TCustomEdit Fields

TWinControl Fields

TControl Fields

TComponent Fields

TRichEdit Field Map

TCustomMemo Fields

TCustomEdit Fields

TWinControl Fields

TControl Fields

TComponent Fields

TMemo Field Map

TCustomMaskEdit Fields

TCustomEdit Fields

TWinControl Fields

TControl Fields

TComponent Fields

TMaskEdit Field Map

Edit Fields

ntrol Fields

l Fields

nent Fields

eld Map

type
 TExposedCustomEdit = class(TCustomEdit)
 public
 property ReadOnly;
 end;

...

procedure TForm1.mnuPasteClick(Sender: TObject);
var
 Ctrl: TWinControl;
begin
 Ctrl := ActiveControl;
 if (Assigned(Ctrl) and
 Clipboard.HasFormat(CF_TEXT)) then
 if (Ctrl is TCustomEdit) and
 (not TExposedCustomEdit(Ctrl).ReadOnly) then
 TCustomEdit(Ctrl).PasteFromClipboard;
end;

Figure 5: Remapping an object with a protected property
(ReadOnly), to one that has public visibility.

On Language
executable code, but it also defines the layout of the bytes that
make up the object’s data. Descendant classes simply stack new data
elements, or fields, on top of the fields defined in inherited classes.
Figure 4 illustrates this relationship.

Notice in Figure 4 that the bottom four memory segments are identical
for all four classes. Because the memory locations of data remain the
same in all descendant classes, we can remap an object that exposes a
protected property to one that exposes a public or published visibility.
This allows us to write the polymorphic code shown in Figure 5.

Looking at this structure, you might not want to use the
TExposedCustomEdit class. You could, for example, use TRichEdit
instead, or any other TCustomEdit descendant. While this will
work for reading the ReadOnly property, it also entails the pos-
sibility of memory corruption and access violation problems. An
example of this would be typecasting a TEdit component as a
TRichEdit, and referencing or writing to the Lines property, which
is defined in TRichEdit, but not in TEdit. The compiler wouldn’t catch
such a violation, whereas using a class such as TExposedCustomEdit
allows you to prevent invalid class mappings.

I struggled with writing this article for quite some time, because this
technique raises some questions that I wasn’t sure how to answer. After
contacting Delphi Chief Architect, Chuck Jazdzewski, however, I’m able
to provide a better explanation of why this works. I also received answers
to the following questions:

Question: Is this technique subject to breaking in future versions
of Delphi?

Answer: Not likely. I can’t promise anything, but a change that would
break your code would certainly break a lot of our own code. We will,
however, make it clear if a version of Delphi breaks this, because a
memory layout change that would break this would be significant.

Question: Are there other uses, besides exposing protected
properties, for which this kind of typecasting would be reliable?

Answer: Actually, it works for anything in the object scope
that is protected — fields, methods, etc.

I haven’t tried to use this technique on protected methods.
I’ve used it on a number of occasions to reference protected
properties, and have never had any problems with it. While
the main use has been to allow for polymorphic code, I’ve also used
this technique to avoid having to register a new component with
Delphi, simply to access a protected property.

Using Run-time Type Information
The technique just described doesn’t solve all our problems, however.
Imagine we’re writing an application that sets certain visual attributes
based on user preferences. To write a method that changes a control
from flat to 3D, you would have to write something like this:

procedure TForm1.SetFlat(Ctrl: TControl; AFlat: Boolean);
begin
 if Ctrl is TSpeedButton then
 TSpeedButton(Ctrl).Flat := AFlat
 else if Ctrl is TCheckListBox then
 TCheckListBox(Ctrl).Flat := AFlat
 else if Ctrl is TToolBar then
 TToolBar(Ctrl).Flat := AFlat

end;

Figure

TCustom

TWinCo

TContro

TCompo

TEdit Fi
12 November 2000 Delphi Informant Magazine
While this appears to be the same problem described previously, it’s
significantly different. The previous technique requires a property to
be defined in a common ancestral class, but the Flat property is
defined separately in each of the listed classes. About the only things
these properties have in common are their name and type. How can
we access them polymorphically without having to write class-specific
code? One solution is to use the run-time type information (RTTI)
stored for all published properties and methods. This is the technique
used by Delphi’s Object Inspector. Note that this technique might
not be appropriate for some situations, because it’s more processor-
intensive than class-specific code.

Accessing RTTI previously required us to write a small library of
routines that would call different routines in the TypInfo unit. With

On Language

function IsPublishedProp(Instance: TObject;
 const PropName: string): Boolean;
function GetOrdProp(Instance: TObject;
 const PropName: string): Longint;
procedure SetOrdProp(Instance: TObject;
 const PropName: string; Value: Longint);
function GetStrProp(Instance: TObject;
 const PropName: string): string;
procedure SetStrProp(Instance: TObject;
 const PropName: string; const Value: string);
function GetFloatProp(Instance: TObject;
 const PropName: string): Extended;
procedure SetFloatProp(Instance: TObject;
 const PropName: string; Value: Extended);
function GetMethodProp(Instance: TObject;
 const PropName: string): TMethod;
procedure SetMethodProp(Instance: TObject;
 const PropName: string; const Value: TMethod);

Figure 6: These TypInfo unit routines allow us to use RTTI more
easily in Delphi 5.
Delphi 5, however, we can now access any published property or
method by calling a single procedure or function. Some of the routines
in the TypInfo unit that allow us to do this are shown in Figure 6.

To use this technique in solving our Flat property problem, we would
first use the IsPublishedProp function to see if the control had a Flat
property, then use the SetOrdProp routine to change its value. If we don’t
use IsPublishedProp, then SetOrdProp will result in an access violation
on any object that doesn’t have a Flat property. We use SetOrdProp for
a Boolean property, because the Boolean type is simply another enumer-
ated type, and all enumerated types are simply ordinal (or numeric)
types. To convert an enumerated type to an ordinal value, we use Pascal’s
Ord function. Translating all this information into usable code, we add
TypInfo to the uses list, and write the following:

procedure TForm1.SetFlat(Ctrl: TControl; AFlat: Boolean);
begin
 if IsPublishedProp(Ctrl, 'Flat') then
 SetOrdProp(Ctrl, 'Flat', Ord(AFlat));
end;

Another possible use of this technique, which could potentially be more
powerful than standard polymorphic techniques, is to allow the property
name parameter passed to routines in the TypInfo unit to be a variable.
There are generic GetPropValue and SetPropValue routines that allow you
to read and write property values, regardless of type. These capabilities
could be combined to take polymorphism to the extreme, at least as far as
published properties and methods are concerned.

While an entire article could be devoted to the intricacies of the
TypInfo unit (see Bill Todd’s article “RTTI Gets Easier” in the
November, 1999 issue of Delphi Informant Magazine), I’ve tried to
illustrate here that, with Delphi 5, you no longer have to know any of
these details to access RTTI.

Using Windows Messaging
Here’s another wrinkle: Sometimes we need to reference common
functionality that’s declared in properties with different names. Take,
for example, the following method:

procedure TForm1.ChangeText(Ctrl: TControl; Txt: string);
begin
 if (Ctrl is TLabel) then
 TLabel(Ctrl).Caption := Txt
 else if (Ctrl is TEdit) then
 TEdit(Ctrl).Text := Txt
 else if (Ctrl is TButton) then
 TButton(Ctrl).Caption := Txt
 else if (Ctrl is TMemo) then
 TMemo(Ctrl).Lines.Text := Txt;
end;

This routine could have been expanded to include numerous other
component class types; this is a common problem in the VCL. Both
of the techniques detailed previously could be used to reach a partial
solution to this problem. However, finding a more complete solution
without creating several new classes requires something more.

To find that solution, we need to first recognize that many of the
components in Delphi are simply wrappers for Windows messages,
and it is Windows itself that handles most of the components. If
we were to create our own class that had a Text property, we would
create an instance variable, called FText, of type string, and our Text
property would store its value in FText. With many of the component
13 November 2000 Delphi Informant Magazine
properties in the VCL, however, there is no instance variable holding
a text or caption value. The data is actually stored in Windows, and
the GetText and SetText routines of a Text property send Windows
messages to retrieve or store the data.

Knowing this allows us to change a property value polymorphically,
by talking directly to Windows instead of executing Delphi code.
The difficulty with this approach is finding the correct messages to
send. A thorough understanding of how Windows works will help,
but it’s not essential. In fact, the only solution is to dig into the VCL
source code itself, because knowing how Windows works doesn’t tell
you anything about how Delphi works.

Digging deep into the VCL reveals that most components change
Text or Caption properties with the WM_SETTEXT message,
often followed by the Delphi custom CM_TEXTCHANGED mes-
sage. WM_SETTEXT tells Windows what the text change is, and
CM_TEXTCHANGED is used internally by Delphi to update vari-
ous aspects of the component, e.g. forcing a repaint of the compo-
nent to show the changed text. With this knowledge, we can change
our routine to handle all controls polymorphically, regardless of class:

procedure TForm1.ChangeText(Ctrl: TControl; Txt: string);
begin
 Ctrl.Perform(WM_SETTEXT, 0, Longint(PChar(Txt)));
 Ctrl.Perform(CM_TEXTCHANGED, 0, 0);
end;

One of the nice things about this technique is that you don’t have to
worry about a component not understanding the message. Windows
messages are ignored by components that don’t know what to do with
them. This technique is not without its share of problems, however.
Unexpected bugs can occur when necessary Delphi source code is
bypassed. Also, components may not respond to messages, or they
may respond in undesirable ways, forcing us to write class-specific
code for those cases. However, this technique gets us closer to a
true polymorphic solution. For those uncomfortable with bypassing
all that Delphi code, a combined approach using all three solutions
presented in this article could be used.

Conclusion
Polymorphic programming is a powerful technique that can be used
in many ways. When designing our own classes, we should make
extended use of class hierarchies, interfaces, and custom Windows

On Language
messages. When dealing with existing classes, however, especially
those in the VCL, we often run into barriers to polymorphic pro-
gramming, and end up writing class-specific code that isn’t extensible
to classes outside those specifically targeted.

This article has demonstrated three methods for bypassing some of
those barriers:
§ Breaking into the protected level of a class to access properties

that are protected in the ancestral class allows us to make use of
protected-but-common code in a parent class.

§ Using RTTI allows us to polymorphically access properties with
the same name, even when their implementation is not defined
in a common ancestral class.

§ When all else fails, digging deep into the VCL source code can
sometimes provide us with the information we need to bypass
Delphi entirely, and make polymorphic calls to Windows. ∆

The files referenced in this article are available on the Delphi Informant
Magazine Complete Works CD in INFORM\00\NOV\DI200011JM.

Jeremy Merrill is an EDS contractor in a partnership contract with the Veteran’s
Health Administration. He is a member of the VA’s Computerized Patient
Record System development team, located in the Salt Lake City Chief Informa-
tion Officer’s Field Office.
14 November 2000 Delphi Informant Magazine

15 November 2000 Delphi Informant Maga

On the ’Net
XSLT / XML

By Keith Wood
XSL Transformations
Using XSLT to Format XML Documents

In previous issues, we’ve been introduced to XML, the Extensible Markup Language, and
have seen how it can be used to transfer data from one platform or application to

another. As noted before, XML was designed to describe data, not to present data (for which
HTML is typically used). However, the designers of XML also provided a means of specifying
the formatting for an XML document — the Extensible Stylesheet Language (XSL).
,

This article is an introduction to the XSL Transfor-
mations (XSLT) language, its syntax, and seman-
tics. I included an example program that allows
us to select an XML document and a correspond-
ing XSL stylesheet, and combine the two to pro-
duce HTML. (The sample program is available
for download; see end of article for details.) For
examples throughout this piece, I’ll refer to the
movie-watcher XML document described in “Gen-
erating XML,” an article that appeared in the Feb-
ruary 2000 issue of Delphi Informant Magazine.

XSL Transformations
XSLT is a language that describes how to manipu-
late the nodes within an XML document, adding
appropriate wrappings to create an output docu-
ment in some other format. This output is often
in HTML for viewing within a browser. However,
XSLT can also be used to produce straight text, .rtf
and even other XML documents.

XSL itself is a separate specification that defines
a formatting language for use in a presentation,
and is outside the scope of this article. XSLT can
be used to create an XSL-formatted document,
which must then be given to a rendering engine to
produce the final display.

A transformation stylesheet is itself an XML docu-
ment. All the processing is encoded within ele-
ments that have a tag starting with <xsl:>, while
the remaining elements are output to the final
document. The main element of the stylesheet is
<xsl:stylesheet>. This requires a version attribute,
currently “1.0”, and a namespace definition for the
<xsl:> elements:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http:// www.w3.org/TR/WD-xsl">
 ...
</xsl:stylesheet>
zine
XSLT is designed to be extensible, allowing for
the inclusion of any set of formatting instructions.
Each set must be identified by its own namespace
and must have a reference to its definitions. The
namespaces are specified within the <xsl:stylesheet>
element as additional <xmlns:> attributes. In the
stylesheet body, the namespaces are followed by a
colon (:) to denote their scope.

Template and Patterns
The XSLT stylesheet uses a system of templates
to match portions of the XML document, and
to specify how they’re manipulated. At least one
template is required to initiate the process, match-
ing with the XML document as a whole:

<xsl:template match="/">
 formatting commands for this document as
 a whole
</xsl:template>

Subsequent templates may be set up to match on
only parts of the XML document hierarchy. To deter-
mine which elements a particular template targets,
we use the match attribute with a pattern specifica-
tion. Elements and attributes are identified by name,
with attributes being prefixed by an “at” symbol (@).
A slash (/) separates elements at different levels, and
the asterisk (*) is a wildcard that matches anything.

Conditions may appear with brackets ([]) following
the element to which they apply. Various function-
like names identify particular nodes, either by their
type or unique ID attribute, or as the current node
of interest. Unless a pattern starts with a slash,
making it an absolute reference, all patterns are
within the context of the current node. Some sample
patterns are shown in Figure 1.

These pattern specifications are used throughout a
transformation stylesheet to identify nodes or attri-

On the ’Net
butes for subsequent processing. For example, in the <xsl:sort> element,
they determine the criteria for ordering nodes. In the <xsl:for-each>
element, they select the subset of nodes to process within a loop.

Within the main template, we can invoke other templates through
the use of the <xsl:apply-templates> element. When used without a
select attribute, this tag applies to all the child nodes of the current
node. Specifying a pattern within the select attribute causes only
the matching nodes to be processed through their templates. For
example, the following affects all the movie elements within the
movie-watcher/movies hierarchy:

<xsl:apply-templates select="movie-watcher/movies/movie"/>

XSLT has a number of built-in templates that provide basic func-
tionality. One of these continues the recursive application of tem-
plates when no specific match is found. Another automatically
copies all text and attribute nodes straight across to the output.
One more matches processing instructions and comments but does
nothing with them.

Generally there is only one template for each node type within
the XML document. By using named templates, however, it’s pos-
sible to process the same node in different ways at different times.
The name attribute on the <template> tag identifies the template.
After this, the <xsl:call-template> element is used to invoke it by
specifying the same name.

An alternative method is to use modes. Again, a template can
have a mode attribute specified as part of its declaration. If this
16 November 2000 Delphi Informant Magazine

Pattern Matches

/ The root node of the XML document.
* Any element.
. The current node.
movie Any movie element.
director|star Any director or any star element.
movie/name Any name element with a movie element
 parent.
movies//name Any name element with a movies element
 ancestor.
text Any text node.
node Any node other than the root node or an
 attribute node.
id(“SW1”) The element with “SW1” as its unique ID.
context The current node (contains the expression).
star[1] Any star element that is the first child of
 its parent.
star[last=1] Any star element that is the only child of
 its parent.
@url Any url attribute within an element.
@* Any attribute within an element.
movie[@rating=“PG”] Any movie element that has a rating
 attribute of “PG.”
/movie-watcher/ The name of the cinema element whose
cinemas/cinema[@id= ID value is equal to the cinema-ID attribute
context/@cinema-id]/ of the current node (presumably a
name screening).
id(@cinema-id)/name The same as above: the name of the
 element (presumably a cinema) whose ID
 is equal to the current cinema-ID attribute.

Figure 1: Some sample XSLT patterns.
same mode is supplied in the <apply-templates> tag, then only the
applicable template is used. The following example displays only
the names of each section within the table of contents:

<xsl:apply-templates select="section" mode="contents"/>

<xsl:template match="section" mode="contents">
 <H1><xsl:value-of select="name"/></H1>
</xsl:template>

Text Content
Text from the stylesheet is generally copied to the resulting document
as is. Nodes that contain only white space are stripped from the docu-
ment during processing. To retain these text nodes, we can enclose
them with an <xsl:text> element.

To include the content of an element or attribute in the text stream,
we can use the <xsl:value-of> element. This element’s select attribute
is a pattern that determines what is written out. Use the ”.” pattern
to retrieve the contents of the current node:

<xsl:value-of select="@rating"/>
<xsl:value-of select="length"/> mins

Building Document Structure
Any elements in the template that don’t belong to the XSLT
namespace or to an extension namespace are copied directly across
to the output document. In this way, it’s easy to create HTML
pages using XSLT simply by including them within a template.
However, there are times when the tags or their attributes need to be
more dynamic. XSLT provides the <xsl:element> and <xsl:attribute>
elements for just these purposes.

To create an output element with a computed name, we use the
<xsl:element> tag, and set its name attribute. Enclose the name
calculation within braces ({ }) to denote it as an expression:

<xsl:element name="H{@level}">
 Element contents
</xsl:element>

Similarly, attributes can have computed names or values through
the use of the <xsl:attribute> tag. This tag must appear within
the bounds of the element to which it refers. The following
example creates a named anchor, using the ID attribute of the
current node:

<A>
 <xsl:attribute name="NAME">
 <xsl:value-of select="@id"/>
 </xsl:attribute>
 Anchor contents

Attribute values may also be created directly within the element using
the expression technique we just discussed:

 Anchor contents

Processing instructions and comments are created within the
output document in a similar manner using the <xsl:processing-

On the ’Net
instruction> and <xsl:comment> tags. These elements can’t be
transferred directly from the XSL stylesheet because it’s an XML
document, and would, therefore, interpret or ignore these as part
of its own processing:

<xsl:processing-instruction name="xml">
version="1.0" encoding="ISO-8859-1"
</xsl:processing-instruction>
<xsl:comment>Comment within the output document
</xsl:comment>

To transfer an existing node from the source XML to the output
document, use the <xsl:copy> tag. This doesn’t transfer the attributes
or the child elements of this node — these must be copied manually.

Loops
The <xsl:for-each> tag provides a looping mechanism within XSLT.
It applies its contents to each node selected by the expression in its
select attribute:

<xsl:for-each select="starring/star">
 <xsl:value-of select="."/>

</xsl:for-each>

Sorting of the selected nodes is achieved through the <xsl:sort>
element, which is placed as a child of the looping element. Its
select attribute specifies the values to be used for the ordering.
Multiple sorting tags allow for primary and secondary sort keys to
be supplied. Additional attributes are used to determine ascending
or descending sorts, the language to be used, and the data type
(text, numeric, or other). Sorting tags can also be used with the
<xsl:apply-templates> tag:

<xsl:for-each select="movie">
 <xsl:sort select="name"/>
 Movie content
</xsl:for-each>

The XSLT engine within Internet Explorer seems to disallow these
sorting tags, preferring instead an <order-by> attribute, with the same
pattern as the sorting tag:

<xsl:for-each select="movie" order-by="name"/>
 Movie content
</xsl:for-each>

Conditional Processing
XSL also includes two ways of making decisions within the tem-
plate. The first is the <xsl:if> tag, which provides a simple “if ” test
around its contents. We use the test attribute to supply the expres-
17 November 2000 Delphi Informant Magazine

<xsl:choose>
 <xsl:when test="@logo-url">

 <xsl:attribute name="SRC">
 <xsl:value-of select="@logo-url"/></xsl:attribute>
 <xsl:attribute name="ALT">
 <xsl:value-of select="name"/></xsl:attribute>

 </xsl:when>
 <xsl:otherwise>
 <H3><xsl:value-of select="name"/></H3>
 </xsl:otherwise>
</xsl:choose>

Figure 2: Using the <xsl:choose> tag.
sion to be evaluated. If this expression refers to an element or
an attribute, this item’s presence is being tested and the contents
will be applied if the item exists. Otherwise the expression must
evaluate to a true or false value. The following adds an <HREF>
attribute to the output with the value of the source node’s <url>
attribute as its target, but only if the latter exists:

<xsl:if test="@url">
 <xsl:attribute name="HREF"><xsl:value-of select="@url"/>
 </xsl:attribute>
</xsl:if>

For an if-then-else or case statement type of test, we need to use
the <xsl:choose> tag. This tag has no attributes, but it does con-
tain a number of <xsl:when> tags and an optional <xsl:otherwise>
tag. Each <when> tag acts like the <if> tag, specifying an expres-
sion to be evaluated in its <test> attribute. There may be several
<when> tags within the <choose>, each testing a different condi-
tion. The <otherwise> tag is added to process any nodes that
didn’t get caught by one of the <when> tags (similar to the else
clause in a Pascal case statement). The code shown in Figure 2
tests for the existence of a <logo-url> attribute on the current
node, and inserts an IMG element if it’s found. If not, the name is
added within a header element.

XSLT Sample
To bring all of these pieces together, take a look at the XSLT stylesheet
in Listing One (beginning on page 19). This transforms the XML data
for a movie into HTML suitable for display on the Web. We can see
the HTML tags embedded within the XSL processing. Note that the
 tag in HTML doesn’t have a closing tag, nor does it have the
XML shorthand for closing, i.e. a trailing slash. However, within this
stylesheet document, which is XML, the closing tag must be present.
The correct handling of this is done by the XSLT engine.

The use of constructed links within the HTML generation provides
easy navigation between the parts of the document. Here we connect
movie descriptions with the lists of screenings where they’re being
shown. The <id> and <idref> attributes of the <movie-watcher>
elements are needed to allow these connections to be made.

Applying Transformations
The Microsoft XML parser provides a TransformNode method on
each node within the DOM (Document Object Model). This takes
another node as a parameter, being a reference to the root node for a
DOM corresponding to the XSL document (remember that these are
XML documents, as well). Returned from this processing is a string
value that contains the results of the transformation. If we prefer
the output as another DOM for further processing, we can use the
TransformNodeToObject method instead.

To demonstrate how this works, we create an application that asks
for an XML document and an XSLT document, before applying
one to the other and displaying the output. We assume the result
is an HTML page, and so present it in a Web browser component.
For each specified file, we create a DOM for it, and then call the
TransformNode method on the XML root, passing the XSL root as
its argument (see Figure 3).

We then save the results to a temporary file and redirect the browser
to it. The original files are also loaded into memos for viewing. See
Figure 4 for the outcome of applying this transformation to a movie-
watcher document.

On the ’Net
The accompanying application has one more feature. It displays
the XML DOM in a tree view, allowing us to select a particular
node (see Figure 5). This node is the one to which the trans-
formation is applied. By loading it in a stylesheet based on a col-
lection of templates, we can transform an individual node, rather
than the entire document. Try this with the supplied template-
based stylesheet, movie-watcher-t.xsl, and select one of the movie or
cinema nodes before applying the transformation.

Conclusion
The power of XML lies in its hierarchical structure and simple encoding
scheme. It allows arbitrary data to be described and transferred between
applications and platforms. The separation between content and presen-
tation is an inherent part of the XML idea. XSL Transformations are
designed to bridge that divide, converting XML documents into a
variety of output formats. This article serves as an introduction to XSLT
syntax and semantics, and shows how to use its abilities with Delphi. ∆

References
§ XSLT Specification: http://www.w3.org/TR/xslt.
§ XML Specification: http://www.w3.org/TR/REC-xml.
18 November 2000 Delphi Informant Magazine

{ Apply the stylesheet to the data and see the results. }
var
 iddXML: IXMLDOMDocument;
 iddXSL: IXMLDOMDocument;
 hRes: HResult;
 stmOut: TFileStream;
 stmString: TStringStream;
 sOutput: string;
begin
 memXML.Lines.Clear;
 memXSL.Lines.Clear;
 try
 { Instantiate the DOMs. }
 hRes := CoCreateInstance(CLASS_DOMDocument, nil,
 CLSCTX_INPROC_SERVER, IID_IXMLDOMDocument, iddXML);
 if hRes <> S_OK then
 raise Exception.Create(sNoDOM);
 hRes := CoCreateInstance(CLASS_DOMDocument, nil,
 CLSCTX_INPROC_SERVER, IID_IXMLDOMDocument, iddXSL);
 if hRes <> S_OK then
 raise Exception.Create(sNoDOM);

 { Load the XML data. }
 memXML.Lines.LoadFromFile(edtXML.Text);
 iddXML.Load(edtXML.Text);
 { Load the XSL stylesheet. }
 memXSL.Lines.LoadFromFile(edtXSL.Text);
 iddXSL.Load(edtXSL.Text);

 { Combine the two and display the results. }
 sOutput := iddXML.TransformNode(iddXSL);
 stmOut := TFileStream.Create(sXSLOutput, fmCreate);
 stmString := TStringStream.Create(sOutput);
 try
 stmOut.CopyFrom(stmString, 0);
 finally
 stmOut.Free;
 stmString.Free;
 end;
 { Load into the browser. }
 brsResults.Navigate(sXSLOutput);
 finally
 { Release the DOMs. }
 iddXML := nil;
 iddXSL := nil;
 end;
end;

Figure 3: Applying an XSL Transformation to an XML document
and producing HTML.
§ Microsoft XML parser: http://msdn.microsoft.com/
 xml/default.asp.

The files referenced in this article are available on the Delphi Informant
Magazine Complete Works CD in INFORM\00\NOV\DI200011KW.

Keith Wood is an analyst/programmer with CCSC, based in Atlanta. He started
using Borland’s products with Turbo Pascal on a CP/M machine. Often working with
Delphi, he has enjoyed exploring it since it first appeared. You can reach him via
e-mail at kbwood@compuserve.com.
Figure 4: The sample application in action; displaying the
transformation.

Figure 5: The sample application in action; the XML DOM in a
tree view.

http://www.w3.org/TR/xslt
http://www.w3.org/TR/REC-xml
http://msdn.microsoft.com/xml/default.asp
http://msdn.microsoft.com/xml/default.asp

On the ’Net
Begin Listing One — XSLT stylesheet
<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- HTML style sheet for movie-watcher XML -->
<!-- Written by Keith Wood, 4 June 1999 -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http:// www.w3.org/TR/WD-xsl">
 <xsl:template match="/">
 <HTML>
 <HEAD>
 <TITLE>Movie Watchers</TITLE>
 </HEAD>
 <BODY>
 <H1>Welcome to Movie Watchers</H1>
 <P>Your source for local f ilm entertainment.
 Have a look at what's on,
 where and
 when.</P>
 <HR/>
 <H2>Movies</H2>
 <xsl:for-each select="movie-watcher/movies/movie"
 order-by="name">
 <!-- Provide link target and optional web link -->
 <A>
 <xsl:attribute name="NAME">
 <xsl:value-of select="@id"/></xsl:attribute>
 <xsl:if test="@url">
 <xsl:attribute name="HREF">
 <xsl:value-of select="@url"/></xsl:attribute>
 </xsl:if>
 <xsl:choose>
 <xsl:when test="@logo-url">

 <xsl:attribute name="SRC">
 <xsl:value-of select="@logo-url"/>
 </xsl:attribute>
 <xsl:attribute name="ALT">
 <xsl:value-of select="name"/>
 </xsl:attribute>

 </xsl:when>
 <xsl:otherwise>
 <H3><xsl:value-of select="name"/></H3>
 </xsl:otherwise>
 </xsl:choose>

 <TABLE BORDER="0" WIDTH="100%">
 <TR>
 <TH ALIGN="LEFT" VALIGN="TOP"
 WIDTH="15%">Rating:</TH>
 <TD WIDTH="15%">
 <xsl:value-of select="@rating"/></TD>
 <TH ALIGN="LEFT" VALIGN="TOP"
 WIDTH="15%">Length:</TH>
 <TD><xsl:value-of select="length"/> mins</TD>
 </TR>
 <TR>
 <TH ALIGN="LEFT" VALIGN="TOP">Director:</TH>
 <TD COLSPAN="3">
 <xsl:value-of select="director"/></TD>
 </TR>
 <TR>
 <TH ALIGN="LEFT" VALIGN="TOP">Starring:</TH>
 <TD COLSPAN="3">
 <xsl:for-each select="starring/star">
 <xsl:value-of select="."/>

 </xsl:for-each>
 </TD>
 </TR>
 <TR>
 <TH ALIGN="LEFT" VALIGN="TOP">Synopsis:</TH>
 <TD COLSPAN="3">
 <xsl:value-of select="synopsis"/></TD>
 </TR>
 <TR>
19 November 2000 Delphi Informant Magazine
 <TH ALIGN="LEFT" VALIGN="TOP">Showing at:</TH>
 <TD COLSPAN="3">
 <xsl:for-each select="/movie-watcher/
 screenings/screening[
 @movie-id=context()/@id]">
 <A>
 <xsl:attribute name="HREF">
 #<xsl:value-of select="@movie-id"/>-
 <xsl:value-of select="@cinema-id"/>
 </xsl:attribute>
 <xsl:value-of select=
 "id(@cinema-id)/name"/>

 </xsl:for-each>
 </TD>
 </TR>
 </TABLE>
 </xsl:for-each>
 <P>Back to the top.</P>
 ...
 <HR/>
 <P>Movie Watcher data supplied by
 Keith Wood
 .</P>
 </BODY>
 </HTML>
</xsl:template>
</xsl:stylesheet>

End Listing One

20 November 2000 Delphi Informant Magazin

Columns & Rows
ADOX / ADO MD / OLAP

By Alex Fedorov and Natalia Elmanova

Date Product Prod
 Category Sub

01.01.99 Vegetables Can
 Vege
01.01.99 Vegetables Fres
 Vege
01.02.99 Dairy Che
01.02.99 Dairy Che

01.03.99 Vegetables Can
 Vege
...

Figure 1: A dataset from a databa
A Practical Guide to
ADO Extensions
Part II: ADO Multidimensional

Last month, we provided an overview of two ADO extensions: ADO Extension for DDL
and Security (ADOX), and Jet and Replication Objects (JRO). This month, we complete

this two-part series by discussing the third ADO extension, ADO Multidimensional (ADO
MD), which is used to access multidimensional data stores.
Such data stores are often used in data warehousing

h

e
e

and Online Analytical Processing (OLAP). So we’ll
begin our tour of ADO MD with a brief introduc-
tion to OLAP, data warehousing, and multidimen-
sional data storage in general.

OLAP and Data Warehousing in Brief
Data analysis and decision support are critical tasks
for many database applications. As a rule, an imple-
mentation of such analysis is based on OLAP, a
popular technology for multidimensional business
analysis. The concept of OLAP was described in
1993 by Dr E.F. Codd, the well-known database
researcher and inventor of the relational database
model. OLAP support is now implemented in many
different DBMSes and tools. If you’re familiar with
Delphi Decision Cube components, you’ve already
seen a simple OLAP implementation; the Decision
Cube application is a primitive OLAP tool.

Let’s look at what data the OLAP storage usually
contains. Imagine a trading company that registers its
data in a database that contains an Invoices view with
the details of invoices. Let’s suppose that querying
this view results in the dataset shown in Figure 1.
e

uct Product Name Country
category

ned Canned Germany
tables Tomatoes
 Dried UK
tables Mushrooms
se Cheddar Cheese Germany
se Gorilla Cheese Austria

Spread
ned Canned UK
tables Tomatoes

... ...

se query.
Let’s assume we want to know the sum of payments
for all German customers. The SQL query for this is:

SELECT SUM(Payments)
 FROM Sales
 WHERE Country = 'Germany'

Of course, we could replace Germany with Austria,
UK, or another country name. As a result, we’ll
receive a one-dimensional set of summaries — one
for each country (see Figure 2).

Now let’s make this query more complex. For
example, we can ask for the sum of payments for
all German invoices for vegetables:

SELECT SUM(Payment)
 FROM Invoices
 WHERE Country = 'Germany'
 AND ProductCategory = 'Vegetables'

If we examine all the possible combinations
of product category and country name, we’ll
receive a two-dimensional table of summaries
(see Figure 3).
City Sales Person Payment

Berlin Nicolas Wilson $1,280

London Daniel Adams $514

Frankfurt Nicolas Wilson $723
Vienna Nicolas Wilson $330

London Daniel Adams $439

...

Columns & Rows

Germany Austria UK USA ...

$2,003 $330 $953 $5,321

Figure 2: A one-dimensional set of summaries.

 Vegetables Dairy Drinks ...

Germany $1,280 $723 $239 ...
UK $514 $0 $732 ...
Austria $0 $330 $0 ...
...

Figure 3: A two-dimensional table of summaries.

Position

Members Member

Axis

Positions Position

Members Member

Cub

D

Levels Level

Members Member

Figure 4: The ADO MD object model.
Such tables are also known as cross tables (or crosstabs), or pivot
tables. The first dimension of the table is Country, and the second
is ProductCategory.

Let’s modify our query again to ask for the sum of payments for all
German orders for vegetables sold by salesperson Nicolas Wilson:

SELECT SUM(Payments)
 FROM Sales
 WHERE Country = 'Germany'
 AND ProductCategory = 'Vegetables'
 AND SalesPerson = 'Nicolas Wilson'

If we examine all possible combinations of ProductCategory, Coun-
try, and SalesPerson, we’ll receive a three-dimensional set of sum-
maries that can be represented as a “cube” of data. We can continue
to make the query more complex (adding dimensions to our data set),
and receive appropriate summaries. This is what a Decision Cube
application does: It calculates such summaries and stores them in its
memory cache.

There can be several sets of summaries, e.g. the number of orders,
average prices, etc. Such summaries are sometimes called measures.

The next idea we’ll explore is the hierarchical structure of dimensions.
For example, if one of the dimensions is a date or date/time field, we
can obtain summaries for different years, as well as quarters, months,
days, etc. (This is the only type of hierarchy supported by Decision
Cube.) We can also decide to compare summaries for similar
time periods (e.g. for all Wednesdays, or for January 1999 and Janu-
ary 2000), or define another type of hierarchy (e.g. Country/State/
City, Product Category/Product, or Subcategory/
Product Name).

Rather than keeping summaries in memory,
a more progressive idea is to store calculated
summaries in a database. This is the core idea
of data warehousing that is OLAP-based, i.e.
the process of collecting and sifting data from
different information systems, and making the
resulting information available to end users
for analysis and reporting. Data warehouses
are used to describe stores of collected and
summarized data. As a rule, from the “logical”
point of view, such storages have non-rela-
tional data structures. Most server DBMS
vendors provide server-side OLAP tools for
creating and using multidimensional storages
for data warehousing. This method of data
analysis is preferable to using client-side tools
such as Decision Cube components, because it

Connection

Catalog

CellSet

Axes

Cell

Positions

CubeDefs
21 November 2000 Delphi Informant Magazine
doesn’t require transferring the original data to the client application,
or recalculating summaries every time they are necessary.

In this article, we’ll use the Microsoft SQL Server OLAP Extensions
to illustrate how to use the ADO Multidimensional objects. At
the time of this writing, the OLE DB Provider for OLAP Services
that comes with Microsoft SQL Server OLAP Extensions and with
Microsoft Office is the only available OLE DB provider that allows
access to multidimensional data. With this provider, we can read
data stored in Microsoft SQL Server multidimensional databases, or
in local .cub files that can be created with Microsoft Excel 2000.
However, we can expect OLE DB providers for other OLAP servers
to appear in the near future.

A discussion of creating multidimensional stores is outside the scope
of this article. Doing this programmatically requires using the SQL
DSO (Decision Support Objects) library.

To illustrate how ADO MD works, we’ll use the FoodMart sample
multidimensional database that comes with Microsoft SQL Server
7.0 OLAP Extensions. It’s also possible to use any local .cub file
created with Microsoft Excel 2000, in which case, of course, you
must have Excel 2000.

ADO MD Objects
We’ll begin with the ADO MD object model that’s available to
Delphi applications. The ADO MD object model has two main
branches (see Figure 4). The first branch is used to access metadata
of multidimensional databases. The second is used when we need to
retrieve the data stored in this database by querying OLAP cubes.

Objects for Retrieving Metadata
The first of the ADO MD objects for retrieving metadata of multi-
dimensional databases, the Catalog object, represents the particular
multidimensional data store. Such stores contain zero, one, or more
cubes, and, therefore, the Catalog object contains the CubeDefs col-
lection. Any element in this collection is a CubeDef object that
represents a particular cube in storage. The name of a cube is the
value of the Name property of an appropriate CubeDef object. In the
FoodMart sample database, there are three cubes: Sales, Warehouse,
and Warehouse and Sales.

The multidimensional cubes can contain — you guessed it — several
dimensions. Correspondingly, any of the CubeDef objects can contain

the Dimensions collection, which contains Dimension objects.
Each Dimension object represents a particular dimen-

sion of the cube, with the name of
the dimension stored in its Name

property. For example, the
Sales cube in the

FoodMart

eDef

imensions Dimension

Hierarchies Hierarchy

Columns & Rows
database contains several dimensions: Store, Time, Product, Promo-
tion Media, Promotions, Customers, and so on.

As we have discussed before, a dimension’s data can be hierarchical.
Correspondingly, the Dimension object contains the Hierarchies col-
lection, which theoretically can contain one or more Hierarchy
objects. In practice, however, there’s only one hierarchy for each
dimension (at least, for Microsoft SQL Server OLAP Extensions), so
this collection will consist of a single item.

The dimension hierarchy can contain one or more levels. Therefore,
the Hierarchy object contains the Levels collection of Level objects. For
example, the hierarchy of the Store dimension in the Sales cube contains
four levels, with the Name property values of the corresponding Level
objects being Store Country, Store State, Store City, and Store Name.

Any level of a hierarchy can contain one or more members that can
be source database field values, or values obtained by calculation, i.e.
grouping. Therefore, the Level object contains the Members collection
of Member objects. For example, the Store Country level of the Store
dimension hierarchy contains three members: Canada, Mexico, and
the US. The Store State level of the same hierarchy contains 10
members: CA, OR, WA, and several states in Mexico and Canada.
And the Store City contains members that are cities in those states.

All of these objects have a wide list of properties and methods. You
can find a detailed description of them in the MSDN Library.

Objects for Retrieving Data
The second branch of the ADO MD object model is used for retriev-
ing the “cube” slices (usually they’re two-dimensional pivot tables
similar to those shown at the beginning of this article). For obtaining
such slices, we need to query the cube. Because a multidimensional
database isn’t relational, we can’t use standard SQL to query it.
Instead, we need to describe the rows and columns, and which sum-
maries we used in the slice. To do this, we need to use Multidimen-
sional Expressions (MDX), the SQL extension for querying OLAP
cubes. A typical multidimensional expression looks like this:

SELECT axis_specif ication ON COLUMNS,

 axis_specif ication ON ROWS

 FROM cube_name

 WHERE slicer_specif ication

where axis_specification describes the horizontal or vertical axis. For
example, [Store].[Store Country].MEMBERS is the list of countries,
and [Store].[Mexico].CHILDREN is the list of the states in Mexico.
The slicer_specification is the name of the summary (measure) that will
be used to create a pivot table. For example, the following MDX query:

SELECT [Time].[Quarter].MEMBERS ON COLUMNS,

 {[Store].[USA].CHILDREN,

 [Store].[Canada].CHILDREN} ON ROWS

 FROM Sales

 WHERE [Measures].[Prof it]

will result in a pivot table that contains the quarterly profit for all
states of the US and Canada. You can find more details of the MDX
syntax and its keywords in the Platform SDK.

In the ADO MD object model, the pivot table that results from the
MDX query is represented by a CellSet object. This object provides
array-like access to the Cell objects that represent particular cells in the
22 November 2000 Delphi Informant Magazine
pivot table. In addition, this object contains the Axes collection of Axis
objects (there are two objects in this collection). The Cell object and the
Axis object have the Positions collection of Position objects that represent
positions along the axis. The Position object has a Members collection
that represents a particular data value in the axis.

Now that we’re familiar with the ADO MD objects, we can use them
to create a simple OLAP manager.

Creating a Simple OLAP Manager
Let’s use the ADO MD objects with Delphi. We’ll create an applica-
tion that can:
§ display cube metadata in a tree view;
§ copy the selected names of tree view nodes and MDX keywords

from a predefined list into a Memo component where an MDX
query is edited; and

§ execute an MDX query and copy the results to the client dataset
to present in a DBGrid component.

To perform this task, we’ll create a new project and place several
components on its main form: a ToolBar with eight buttons, and
TreeView, ListBox, DBGrid, ClientDataSet, DataSource, and Memo
components. Then, we’ll set the DataSource property of the DBGrid1
component to DataSource1, and the DataSet property of the Data-
Source1 component to ClientDataSet1. The ListBox1 component
should be filled with MDX keywords, such as CHILDREN, MEM-
BERS, DESCENDANTS, etc. (The finished application is shown in
Figure 6. It’s available for download; see end of article for details.)

We need to refer to the ADO MD Type Library contained in
the MSADOMD.DLL file, because ADO MD isn’t supported
by Delphi 5 at the component level. To do this, select Project

| Import Type Library, and pick Microsoft ActiveX Data Objects
(Multi-dimensional) 1.0 Library from the list of available type
libraries. Please note that if you’ve already imported the ADOX
type library and haven’t renamed the Delphi class for the ADOX
Catalog object, the Delphi TCatalog class is already declared.
To avoid conflict with this declaration, just rename TCatalog to
TADOMDCatalog. It’s also desirable to uncheck the Generate Com-

ponent Wrapper checkbox, because we only need to create a .pas file
to access ADO MD objects. Click the Create Unit button. This will
generate the ADOMD_TLB.PAS file, which is the interface unit to
the ADO MD type library. Now we need to include a reference to
this file in our application’s uses clause, as well as references to the
ComObj and ADODB units.

Now we need to connect to the multidimensional database. The con-
nection string that will be used for this should include the OLE DB
Provider name (in our case, it will be OLE DB Provider for OLAP
Services, and you need to be sure it’s installed), the computer name,
and the database name:

DS := 'Provider=MSOLAP.1;Data Source=localhost; ' +

 'Initial Catalog=FoodMart';

Again, you can also connect to the local cubes stored in Excel .cub
files. In this case, the connection string should be similar to this:

DS :=

 'Provider=MSOLAP.1;Data Source=C:\Data\Cubes\NW1.cub';

We’ll place the code responsible for connecting to the multidimen-
sional database in the OnClick event handler for one of the buttons.

Columns & Rows
This code, along with the procedure that fills the TreeView1 com-
ponent with the names of cubes, is shown in Figure 5. Here we
connect to the database, create a Catalog object, and iterate through
its CubeDefs collection to retrieve their names, i.e. the value of the
Name property for each CubeDef object.

The real processing of cube metadata is implemented in the
OnMouseDown event handler of the TreeView1 component shown
in Listing One. Here we define the type of node just clicked (a
node for a cube, dimension, level, or member) using its Level
property, and whether its child nodes are already downloaded from
the database. If they haven’t been downloaded (i.e. the Count
property of the node is zero), we download them and create child
nodes using the respective Name property of the ADO MD object.
If there’s nothing to download, we copy the node name to the
current cursor position of the Memo1 component.

The code for copying the MDX keywords to Memo1 is also shown
in Listing One. Now we have a tool for browsing cube metadata,
23 November 2000 Delphi Informant Magazine

procedure TForm1.Button1Click(Sender: TObject);
begin
 DS := 'Provider=MSOLAP.1;Data Source=localhost;' +
 'Initial Catalog=FoodMart';
 FillTreeView(DS);
end;

procedure TForm1.FillTreeView(DataSource: WideString);
var
 I : Integer;
begin
 // Create a new Catalog object.
 Catalog1 := CoCatalog.Create;
 TreeView1.Items.Clear;
 RootNode := TreeView1.Items.Add(nil, 'Catalog');
 // Connect to the multidimensional database.
 Catalog1._Set_ActiveConnection(OleVariant(DataSource));
 // Iterate through cubes and retrieve their names.
 for I := 0 to Catalog1.CubeDefs.Count-1 do begin
 CubeDef1 := Catalog1.CubeDefs[I] as CubeDef;
 CubeDefNode :=
 TreeView1.Items.AddChild(RootNode, CubeDef1.Name);
 end;
end;

Figure 5: Connecting to the multidimensional database.

Figure 6: The sample application: a simple OLAP manager.
and creating the text of MDX queries by clicking on tree nodes or
keyword list items.

The next step in creating our OLAP manager is to execute the
MDX query entered in the Memo1 component, and fill the client
dataset with the results. This functionality is implemented in the
CDSFill procedure shown in Listing Two (on page 24). Here we
create a CellSet object and call its Open method. If the MDX
query is valid, we create an empty client dataset and fill its field
names with the Caption property values of the first items in the
Members collections of all items in the Position collection of the
first Axis.

The field names in datasets should be unique. However, in real
multidimensional databases, the Caption property values of Members
can be duplicated. For example, in the Year/Month hierarchy, the
caption for January 1999 and January 2000 members can both be
“January”. There are many ways to avoid duplicate field names. We’ve
selected the simplest, i.e. add a unique number contained in the
Ordinal property of the Member object.

After the field names of the client dataset are defined, we iterate
through the CellSet rows. For each row, we place the Caption
property value of the first item in the Members collection of the
respective item in the Position collection of the second Axis.
Then we place the values of the appropriate Cell objects available
through the Item collection of the CellSet object. As a result,
we’ll receive a DBGrid1 component filled with a data slice
(see Figure 6).

We have created a simple OLAP manager using ADO MD. This
is just a simple example to illustrate the possibilities of ADO MD.
They can be extended of course — for example, by adding charting
possibilities, or a more sophisticated MDX query generator.

Conclusion
In this series, we’ve discussed the ADO extensions: ADO Exten-
sion for DDL and Security (ADOX), Jet and Replication Objects
(JRO), and ADO Multidimensional (ADO MD). They allow us
to provide our users with database applications with complex
and useful functionality that is unavailable with ADO Express
components alone.

We are thankful to Dan Miser for his advice while creating the code
used in this example. ∆

The files referenced in this article are available on the Delphi Informant
Magazine Complete Works CD in INFORM\00\NOV\DI200011AF.

Alex Fedorov is an executive editor for ComputerPress magazine published in
Moscow. He’s one of the co-authors of Professional Active Server Pages 2.0
[Wrox Press, 1998] and ASP 2.0 Programmer’s Reference [Wrox Press, 1999].
Natalia Elmanova, Ph.D., is an Associate Professor of the Sechenov’s Moscow
Medical Academy and a freelance Delphi/C++Builder programmer, trainer, and
consultant. She was a speaker at the 10th Annual Inprise/Borland Conference.
Natalia and Alex are authors of Advanced Delphi Developer’s Guide to ADO
[Wordware Publishing, 2000], and several programming books written in Russian.
You can visit their Web site at http://d5ado.homepage.com.

http://d5ado.homepage.com

Columns & Rows
Begin Listing One — TreeView1MouseDown
procedure TForm1.TreeView1MouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
var
 HitTest : THitTests;
 CurrNode : TTreeNode;
 I : Integer;
 NodeName : string;
 AddString : string;
begin
 HitTest := TreeView1.GetHitTestInfoAt(X,Y);
 // Check if one of the tree nodes is clicked.
 if (htOnItem in HitTest) then begin
 CurrNode := TreeView1.GetNodeAt(X, Y);
 // If the node can have child nodes, but they aren't
 // added yet, we will add them.
 if ((CurrNode.Count=0) and (CurrNode.Level<4)) then
 case CurrNode.Level of
 1: // This node represents a cube.
 begin
 CubeDef1 :=
 Catalog1.CubeDefs.Get_Item(CurrNode.Text);
 // Iterate through dimensions of the cube
 // and retrieve their names.
 for I := 0 to CubeDef1.Dimensions.Count-1 do
 begin
 Dimension1 :=
 CubeDef1.Dimensions[I] as Dimension;
 DimNode := TreeView1.Items.AddChild(
 CurrNode, Dimension1.Name);
 end;
 end;
 2: // This node represents a dimension.
 begin
 CubeDef1 := Catalog1.CubeDefs.Get_Item(
 CurrNode.Parent.Text);
 Dimension1 := CubeDef1.Dimensions.Get_Item(
 CurrNode.Text);
 // Iterate through levels of hierarchy of
 // this dimension.
 for I := 0 to Dimension1.Hierarchies[0].
 Levels.Count-1 do begin
 Level1 := Dimension1.Hierarchies[0].
 Levels[i] as Level;
 LevelNode := TreeView1.Items.AddChild(
 CurrNode, Level1.Name);
 end;
 end;
 3: // This node represents a level.
 begin
 CubeDef1 := Catalog1.CubeDefs.Get_Item(
 CurrNode.Parent.Parent.Text);
 Dimension1 := CubeDef1.Dimensions.Get_Item(
 CurrNode.Parent.Text);
 Level1 := Dimension1.Hierarchies[0].Levels.
 Get_Item(CurrNode.Text);
 // Iterate through members of this level.
 for I := 0 to Level1.Members.Count-1 do begin
 Member1 := Level1.Members[I] as Member;
 MemberNode := TreeView1.Items.AddChild(
 CurrNode, Member1.Name);
 end;
 end;
 end // case
 else
 // If the node already has child nodes, or there is
 // nothing to download, we will copy the node name to
 // the MDX query editor.
 // If this isn't the root node...
 if Currnode.Level > 0 then begin
 CurrNode := TreeView1.GetNodeAt(X, Y);
 NodeName := CurrNode.Text;
 // Copy the node name formatted according to the
 // MDX syntax to the MDX query editor.
24 November 2000 Delphi Informant Magazine
 if ((CurrNode.Level=1) or
 (CurrNode.Parent.Parent.Text='Measures')) then
 AddString := '[' + NodeName + ']'
 else
 AddString := '[' + NodeName + '].';
 Memo1.SetSelTextBuf(PChar(AddString));
 end;
 end;
end;

procedure TForm1.ListBox1Click(Sender: TObject);
var
 AddString : string;
begin
 // Add an MDX keyword from the Listbox to the MDX
 // query editor.
 AddString := Listbox1.Items[Listbox1.ItemIndex] + ' ';
 Memo1.SetSelTextBuf(PChar(AddString));
end;

End Listing One

Begin Listing Two — CDSFill
procedure TForm1.Button2Click(Sender: TObject);
begin
 CDSFill(DS);
end;

procedure TForm1.CDSFill(DataSource: WideString);
var
 I, J : Integer;
 V : OleVariant;
begin
 // Create a new CellSet object.
 CellSet1 := CoCellSet.Create;
 try
 // Execute an MDX query in memo and open a cellset.
 CellSet1.Open(Memo1.Text,DataSource);
 with ClientDataSet1 do begin
 Close;
 with FieldDefs do begin
 // Clear all f ield def initions in a client dataset.
 Clear;
 // Add new f ield def initions.
 // Here is the f irst one for row names.
 with AddFieldDef do begin
 Name := 'Rows';
 DataType := ftString;
 end;
 // Iterate through the Positions collection
 // of the f irst axis.
 for I := 1 to
 CellSet1.Axes[0].Positions.Count do begin
 with AddFieldDef do begin
 // The f ield value of the source database will
 // be the column name. In datasets, the column
 // names should be unique, so we will add the
 // unique number containing in the Ordinal
 // property of the Position object to the
 // f ield value.
 Name := CellSet1.Axes[0].Positions[I-1].
 Members[0].Caption + '(' + IntToStr(
 CellSet1.Axes[0].Positions[I-1].Ordinal)+')';
 DataType := ftFloat;
 end;
 end;
 end;
 // Create and open the client dataset.
 CreateDataSet;
 Open;
 // Add rows to the client dataset.
 for J := 1 to
 CellSet1.Axes[1].Positions.Count do begin
 // Add a row.

Columns & Rows
 Append;
 // Add the row name using the Position collection
 // item of the second axis.
 Fields[0].Value := CellSet1.Axes[1].Positions[J-1].
 Members[0].Caption;
 // Iterate through the cells in the row.
 for I := 1 to
 CellSet1.Axes[0].Positions.Count do begin
 // Create an array of cell coordinates.
 V := VarArrayCreate([0,1], varVariant);
 V[0] := I-1;
 V[1] := J-1;
 // If the cell in the cellset is not empty...
 if CellSet1.Item[PSafeArray(TVarData(V).VArray)].
 FormattedValue <> '' then
 // ...the f ield value is set to the cell data.
 Fields[I].Value := Cellset1.Item[PSafeArray(
 TVarData(V).VArray)].Value
 else
 // Otherwise, the f ield value is set to zero.
 ClientDataSet1.Fields[I].Value := 0;
 end;
 end;
 // Close the cellset and free resources.
 CellSet1.Close;
 CellSet1 := nil;
 end;
 except
 ShowMessage('Invalid MDX Query');
 end;
end;

End Listing Two
25 November 2000 Delphi Informant Magazine

26 November 2000 Delphi Informant Magazi

In Development
Threads / TActivityProcessLog / Delphi 5

By Nikolai Sklobovsky

DisplayForm =
private
 FPanel: TPan
 FTaskList: P
 FCursor: TCu
 FPumpOnUpdat
 FDoNotDecrea
 FCancelled:
 procedure Fo
protected
 procedure Do
 procedure Do
public
 constructor
 procedure Se
 bAutoSize:
 property Pu
 read FPump
 property Do
 read FDoNo
 write FDoN
 property Ca
 read FCanc
end;

// Helper func
function Creat
 iWidth: Inte
 TDisplayForm

Figure 1: The in
Children of Threadmare
Sharing Progress with Users Intelligently

In the article “Waking from Threadmare,” which appeared in the June 2000 issue of
Delphi Informant Magazine, we discussed different problems a novice programmer

might encounter when dealing with multiple threads. We also outlined a few strategies
for solving those problems. Our main weapon in the fight with the TThread demon
was a powerful component named TActivityProcessLog, and its lightweight sidekick,
TCustomActivityLogClient. Our sample application provided the diligent reader with
answers to the natural how’s and why’s. Due to obvious article space limitations,
however, we could only scratch the surface of its possible uses.
Now, it’s time to take a closer look at the client side
and see what perks are immediately available to us.
Throughout this article we’ll discuss this in greater
detail, and learn how to fulfill various tasks that range
from the simplest to the most sophisticated. Our
examples will cover the following widely used areas:
§ short-term process progress display, e.g. load-

ing a document;
§ advanced interruptible short-term process

progress display, e.g. generating data and find-
ing text/data;
ne

class(TRunTimeForm)

el;
ointer;
rsor;
e: Boolean;
seAutoWidth: Boolean;
Boolean;
rmKeyPress(Sender: TObject; var Key: Char);

Show; override;
Hide; override;

Create; reintroduce; overload;
tMessage(const csMessage: string;
 Boolean = True);
mpOnUpdate: Boolean
OnUpdate write FPumpOnUpdate;
NotDecreaseAutoWidth: Boolean
tDecreaseAutoWidth
otDecreaseAutoWidth default True;
ncelled: Boolean
elled write FCancelled;

tion - wrapper for a constructor.
eDisplayForm(const csMessage: string;
ger = -240; iHeight: Integer = 40):
;

terface portion of TDisplayForm.
§ status bar meets progress bar, i.e. background
processing;

§ and, finally — the ultimate weapon — a prog-
ress dialog box component.

In contrast to the article in June’s issue, which pur-
sued mostly conceptual goals, this text takes a more
practical approach. This means you will see a lot
of “inline” code. Sample application code from this
article and “Waking from Threadmare” are available
for download; see end of article for details.

Auxiliary Tools
Before we can proceed with our main goal of
catching thread/process feedback, we need to
develop a simple visual tool for displaying it.
What kind of tool do we need? Something
simple that will allow us to display a line of text
that will eventually be replaced with a new line,
while disabling a user’s ability to manipulate the
application.

To achieve this, we’re going to create a special
form, conveniently named TDisplayForm. Its inter-
face portion is shown in Figure 1.

Why are we deriving this form from some
mysterious TRunTimeForm, rather than simply
from TForm? The answer will become obvious
if you’re willing to experiment and dare to
change the base class to TForm. The inherited
TCustomForm.Create constructor will detect that
our new form isn’t a TForm, and will attempt
to locate and load its resource part (originally
stored in a .dfm file). As long as there’s no exist-
ing RunTimeForm.dfm file, an exception will
be raised, effectively preventing us from using
anything that is not a TForm.

In Development
To overcome this, we create an heir to TForm and supply it with
the overridden Create constructor. Its interface and implementa-
tion are straightforward (see Figure 2). In essence, it mimics the
standard TCustomForm constructor, skipping only its resource-
locating segment.

Now let’s return to our Display form. All of its methods are shown
in Listing One (on page 32). The constructor creates and initiates
the necessary visible controls. The SetMessage and FormKeyPress
procedures are also obvious. The DoShow and DoHide methods,
however, require some comment. They use one of the very power-
ful Delphi commodities — the set of task list routines. This
“sandwich” consists of two methods: DisableTaskWindows and
EnableTaskWindows. The first call disables all of the application’s
high-level windows (except the one passed as a parameter) exactly
as the ShowModal method does. The other one performs the
reverse operation.

Although not obvious, the advantage of using this technique rather
than the traditional ShowModal call is indisputable. ShowModal is a
27 November 2000 Delphi Informant Magazine

interface
 ...
 // This form allows any descendant form to be created
 // without a DFM f ile.
 TRunTimeForm = class(TForm)
 public
 constructor Create(AOwner: TComponent); override;
 end;
 ...
implementation
...
constructor TRunTimeForm.Create(AOwner: TComponent);
begin
 GlobalNameSpace.BeginWrite;
 try
 inherited CreateNew(AOwner);
 // Resource-locating-loading part skipped.
 f inally
 GlobalNameSpace.EndWrite;
 end;
end;

Figure 2: The interface and implementation of TForm.

procedure ScanDataSet(Table: TDataSet;
 bSingleThreaded: Boolean);
var
 frm: TDisplayForm;
begin
 frm := CreateDisplayForm('Scanning the table...');
 with Table do
 try
 frm.PumpOnUpdate := bSingleThreaded;
 First;
 while not Eof do begin
 if frm.Cancelled then
 Break; // User hit [Esc].
 // We don't need to react on every record.
 if RecNo mod 1000 = 0 then
 frm.SetMessage(Format(
 'Records processed: %d out of %d',
 [RecNo, RecordCount]));
 // Do something with table here.
 Next;
 end;
 f inally
 frm.Free;
 end;
end;

Figure 3: Capitalizing on our asynchronous CreateDisplayForm.
synchronous call, which forces you to move all of your business logic to
the form being displayed. Our CreateDisplayForm call is asynchronous,
allowing us to show the form and immediately proceed with our
errands. Furthermore, the business code doesn’t require a link to the UI
element, and thus may reside wherever we choose. We’ll see more real-
life examples of its usage down the road. In the meantime, a simple,
but helpful example is shown in Figure 3.

The Display form provides us with an adequate means for displaying
one line of variable text in a modal way, and for intercepting the
user’s possible cancellation instructions. You can easily expand its
capability by adding pictures or animations, or by allowing for more
text. Even without multiple threads, this object is already valuable.
And wait until you see how it works with our activity log component.

Displaying Loading Info
One of the typical tasks programmers encounter when dealing with
a new middle-size project is a splash screen display. Traditionally, this
task is handled in the manner shown in Figure 4. Although there’s
nothing wrong with this approach, sometimes only a few seconds
are required to load an application. In this scenario, displaying an
About screen with its sizable graphical content would be a waste
of time and resources. Loading it may consume 50 or 100 percent
of the otherwise relatively short loading time. Remember that your
primary goal in this case is to make the loading time a little bit more
reasonable, not 100 percent longer.

Another reason for not displaying an About screen is because, quite
often, you’re dealing with some kind of document processing and
thus, you may need to display something “splashy” many times
during the session, i.e. each time you change the document. During
these changes, you definitely don’t want your user to hit various
buttons. Due to the data dependency, you also have no idea how long
each load process might take. However, it would be unfair to leave
the user face-to-face with only the hourglass cursor. This is where our
Display form and activity log may come in handy.

Let’s consider the following example. Our application will be process-
ing a file of records with variants. Apart from the other important
business information, each record holds a “type” field. Let’s assume
begin // My project.
 Application.Initialize;
 Application.Title := 'Children of Threadmare';
 with TfrmAbout.Create(Application) do
 try
 // Remove visual reminder of form's "closeability."
 btnOK.Hide;
 BorderIcons := [];
 // The only place we can say something, and prevent
 // user from doing anything to it.
 Caption := 'Loading, please wait...';
 Enabled := False;
 Show;
 // Inevitable evil; otherwise it won't be
 // properly drawn.
 Update;
 Application.CreateForm(TfrmMain, frmMain);
 // Some additional initialization code goes here.
 // You can use sleep(3*1000) to imitate it.
 f inally
 Free;
 end;
 Application.Run;
end.

Figure 4: Traditional splash-screen implementation.

In Development

procedure TfrmMain.Generate1Click(Sender: TObject);
var
 i: Integer;
begin
 if SaveDiaFLog2Execute then begin
 FLog1Initialize;
 try
 FAllowCancel := True;
 i := GenerateDataFile(SaveDiaFLog2FileName, 1000000,
 FLog1Client);
 f inally
 FLog1Finalize;
 end;
 ShowMessage(Format('Records generated: %d', [i]));
 end;
end;
we’re asked to provide a simple navigator to display all the record types
in a narrow list. When a user clicks on a particular row, the record
details must be displayed in the main part of the window. (We’re not
going to do this in the sample code, but we’ll do everything else.)

To achieve this, we may need to read the entire file immediately upon
opening it to collect all the record types. (Let’s assume, for the sake
of the overall task, that we have to do it for some important reason.)
Because this step will take a relatively short, but unpredictable, length
of time, it would be nice to provide some progress information.

We purposely use a highly simplified and somewhat old-fashioned
approach to the data processing here. This article isn’t devoted to I/O
optimization or data structures design. The real code may use asyn-
chronous I/O routines, caching, streaming, reading ahead, and all the
other usual optimization techniques. Here, we’re only concentrating
on the visualization aspects. Our file-reading code looks relatively
simple, and is shown in Listing Two (on page 32).

So far we have only a few log-related lines, namely its initialization
and finalization in the OpenDataFile procedure. As long as we don’t
use multiple threads in this case, it’s wise to take complete control
and set the log’s AutoFinalize property to False. Of course, the
UsePumping property should be set to True; otherwise everything
would appear frozen until the end of the process.

To fulfill our assignment, we only need to set up a few of the log’s
event handlers. At the initialization point, we will create the Display
form, which will eventually be released in OnFinalize. Also, we’ll
28 November 2000 Delphi Informant Magazine

procedure TfrmMain.Log1Initialize(
 Sender: TActivityProcessLog);
begin
 FForm := CreateDisplayForm('Working, please wait...');
end;

procedure TfrmMain.Log1Finalize(
 Sender: TActivityProcessLog);
begin
 FreeAndNil(FForm);
end;

procedure TfrmMain.Log1DataUpdateStart(
 Sender: TActivityProcessLog);
begin
 FMessage := '';
end;

procedure TfrmMain.Log1ProcessUpdate(
 Sender: TActivityProcess);
begin
 Sender.GetMessage(FMessage);
end;

procedure TfrmMain.Log1DataUpdateFinish(
 Sender: TActivityProcessLog);
begin
 if FAllowCancel and FForm.Cancelled then
 FLog1Cancel
 else
 if FMessage <> '' then
 FForm.SetMessage(FMessage);
end;

Figure 5: Code to set up a few of the log’s event handlers.

Figure 6: The result of our efforts in Figure 5.
collect some information during each OnProcessUpdate event, and
display it at OnDataUpdateFinish (see Figure 5). As a result of our
efforts, we finally get something like that shown in Figure 6.

Generating Data
That was pretty good for a few lines of code, but can we get more
from it? Sure thing! We now need to test our application somehow.
Let’s allow the user to generate a file to play with. And rather than
displaying an additional entry dialog box for a projected file size,
let’s simply allow our user to cancel the generation process at any
moment. All we would need to do is provide generation code, and
bind it to a menu item. The result is shown in Figure 7.

Now, after we start the generating process, the user may hit E any
time he or she decides the generated file size is big enough. No other
function GenerateDataFile(const csFileName: string;
 MaxRecCount: Integer;
 LogClient: TCustomActivityLogClient = nil): Integer;
var
 i, rectype: Integer;
 data: TDataRecord;
 datafile: TDataFile;
begin
 Result := 0;
 Assign(dataf ile, csFileName);
 Rewrite(dataf ile);
 try
 try
 LogClient.Start(csFileName, cbProgress);
 try
 for i := 0 to Pred(MaxRecCount) do begin
 if i mod 100 = 0 then
 LogClient.Report(i, MaxRecCount, Format(
 rsRecords_II, [i, MaxRecCount]));
 FillChar(data, SizeOf(data), #0);
 rectype := Random(Ord(High(TDataRecordType)));
 data.RecType := TDataRecordType(rectype);
 // You can f ill additional f ields here.
 Write(datafile, data);
 Inc(Result);
 end;
 f inally
 LogClient.Finish;
 end;
 except
 // Nothing serious.
 on e: EActivityProcessLogAbort do ;
 else
 raise;
 end;
 f inally
 Close(datafile);
 end;
end;

Figure 7: Testing our application.

In Development
changes are necessary; our log will automatically create the Display
form and release it when it’s no longer needed. We can add as many
business processes as we need, and each time all we have to do is
initialize the log and finalize it when the work is done.

Finding Text/Data
To make our application a little bit more useful, let’s provide some
simple search capabilities. First, let’s add some randomly-generated
phone data to our file:

case data.RecType of
 drtPhoneFax:
 begin
 data.Area := Format('%.3d', [Random(999)]);
 data.Phone := IntToStr(1000000 + Random(9999999));
 end;
end;
29 November 2000 Delphi Informant Magazine

procedure TfrmMain.Log1Initialize(
 Sender: TActivityProcessLog);
begin
 // Nothing here.
end;

procedure TfrmMain.Log1DataUpdateStart(
 Sender: TActivityProcessLog);
const
 OneSecond = 1.0 / (24 * 60 * 60);
begin
 if (FForm = nil) and
 ((Now - Sender.TimeStart) > OneSecond) then
 FForm := CreateDisplayForm('Working, please wait...');
 FMessage := '';
end;

procedure TfrmMain.Log1DataUpdateFinish(
 Sender: TActivityProcessLog);
begin
 if FForm = nil then
 Exit;
 if FAllowCancel and FForm.Cancelled then
 FLog1.Cancel
 else
 if FMessage <> '' then
 FForm.SetMessage(FMessage);
end;

Figure 8: Our modified event handlers.

procedure TfrmMain.FormCreate(Sender: TObject);

 procedure SetupProgressBar;
 begin
 ProgressBar1.Hide;
 ProgressBar1.Parent := StatusBar1;
 ProgressBar1.Left := StatusBar1.Panels[0].Width + 3;
 ProgressBar1.Top := 3;
 ProgressBar1.Height := StatusBar1.ClientHeight - 3;
 ProgressBar1.Width :=
 StatusBar1.ClientWidth - ProgressBar1.Left - 20;
 end;

begin
 // Other initialization...
 SetupProgressBar;
end;

procedure TfrmMain.StatusBar1Resize(Sender: TObject);
begin
 ProgressBar1.Width :=
 StatusBar1.ClientWidth - ProgressBar1.Left - 20;
end;

Figure 9: “Dropping” a progress bar onto a status bar at run time.
Dropping and setting up FindDialog isn’t a problem. The problem is
that sometimes we can find what we’re looking for in no time at all,
and other times we would need to scan the entire file and still not
find the match. We certainly don’t want to display our progress form
if all we have to do is move a couple of records ahead. Otherwise,
some visual feedback is definitely welcome.

This may sound like a relatively tricky problem, but it isn’t. Let’s
use the same technique as before, but let’s postpone our Display
form creation for a second or so. It would only be worthwhile to
display the form if we didn’t find a match during that time. The
modified version of our event handlers is shown in Figure 8. As
you can easily see, the Display form is now only created if more
than one second passed since the log initialization moment. Also,
form presence is checked before its SetMessage method is called.
Now it’s time to add some threads to our application, and change
its visual representation.
procedure TfrmMain.Log2Initialize(
 Sender: TActivityProcessLog);
begin
 StatusBar1.Panels[1].Bevel := pbNone;
 ProgressBar1.Position := ProgressBar1.Min;
 ProgressBar1.Show;
end;

procedure TfrmMain.Log2Finalize(
 Sender: TActivityProcessLog);
begin
 ProgressBar1.Hide;
 StatusBar1.Panels[1].Bevel := pbLowered;
 StatusBar1.Panels[0].Text := '';
end;

procedure TfrmMain.Log2ProcessUpdate(
 Sender: TActivityProcess);
begin
 with Sender do begin
 if Level = 1 then
 StatusBar1.Panels[0].Text := Format(
 'Steps completed: %d out of %d', [Position, Max])
 if Level = 2 then begin
 ProgressBar1.Max := Max;
 ProgressBar1.Position := Position;
 end;
 end;
end;

procedure TfrmMain.Start1Click(Sender: TObject);
begin
 FLog2.Initialize;
 TTestThread.Create(FLog2Client, 100, 100000, 100, 0);
end;

Figure 10: Event handlers for our new FLog2 component.

Figure 11: The main form of our application.

In Development

TActivityProgressDialog = class(TComponent)
// Private and protected parts are omitted for brevity.
public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 procedure Start;
 procedure Journal(const csText: string); overload;
 procedure Journal(strs: TStrings); overload;
 procedure Finish;
 // In case you don't use CloseOnFinish,
 // you may need this one.
 procedure CloseDialog;

 // Run-time properties.
 property Client: TCustomActivityLogClient read FClient;
 // WARNING: Under no circumstances change form/log
 // event handlers! The main purpose of these properties
 // is to provide easy read-only access to their
 // sub-properties without wrapping each one.
 property Form: TfrmActivityProgress read FForm;
 property Log: TActivityProcessLog read FLog;

published
 // These properties should set in inactive mode only.
 property FileName: string
 read GetFileName write SetFileName;
 property FileMode: TActivityDialogFiling
 read FFileMode write SetFileMode;
 property DetailsMode: TActivityDialogDetails
 read FDetailsMode write SetDetailsMode;
 property CancelMode: TActivityDialogCancel
 read FCancelMode write SetCancelMode;
 property TimeMode: TTimeReportMode
 read GetTimeMode write SetTimeMode;
 property UsePumping: Boolean
 read GetUsePumping write SetUsePumping;
 property Modal: Boolean
 read FModal write SetModal default True;
 property OneLevel: Boolean
 read FOneLevel write SetOneLevel;
 // These properties may be set in both active
 // and inactive modes.
 property CloseOnFinish: Boolean
 read FCloseOnFinish write SetCloseOnFinish;
 property Caption: string
 read GetCaption write SetCaption;
 property AutoScrollDetails: Boolean
 read FAutoScrollDetails write FAutoScrollDetails
 default True;
 // Event-handlers.
 property OnStart: TActivityDialogEvent
 read FOnStart write FOnStart;
 property OnFinish: TActivityDialogEvent
 read FOnFinish write FOnFinish;
 property OnClose: TActivityDialogEvent
 read FOnClose write FOnClose;
 property OnCancel: TActivityDialogQueryEvent
 read FOnCancel write FOnCancel;
 property OnTimer: TActivityDialogEvent
 read FOnTimer write FOnTimer;
end;

Figure 13: The public/published part of the Progress dialog box.

Figure 12: The customizable Progress dialog box at run time.
Background Processing
Let’s use our old friend from “Waking from Threadmare,” which
runs two nested loops in its Execute method. Because we’re now
dealing with multiple threads, let’s add one more log component,
and this time leave its AutoFinalize and UsePumping properties
intact. We’ll also use a progress bar as our progress indicator and
a status bar as its container. We would have to add a few lines of
code to ensure that the progress bar resides on the status bar. By
default, you cannot drop a progress bar onto a status bar, so we’re
going to achieve it at run time, as shown in Figure 9. The only
thing left to do is attach some code to our new FLog2 component
event handlers (see Figure 10).

In this case we don’t call Finalize manually. Instead, we rely upon log’s
AutoFinalize feature, which guarantees it will be called in due time.
Now you can launch the program, select Background | Start, and watch
it run while you’re doing something else.

Progress Dialog Box
Having had so much time invested in our log, it would be com-
pletely unwise not to spend a little bit more to create a component
that can be used in all applications that require similar feedback
from a business process. It’s not even difficult at this point. We just
need to provide some properties and handle them properly. The
main form of our sample application provides access to almost all of
these properties (see Figure 11). Hit the Start button and you’ll get
what you want: a fully customizable Progress dialog box in action
(see Figure 12).

Let’s take a closer look at the properties we can use to make our Progress
dialog box suit a wide spectrum of different tasks. The public/published
part of its interface is shown in Figure 13. Although some of the features
are obvious and self-explanatory, others will definitely benefit from a few
extra words. See the sidebar “Progressive Features” on page 31.

Conclusion
We have considered some typical ways to use TActivityProcessLog. It turns
out to be very useful in conventional single-threaded, and — of course
— multi-threaded environments. We also came out with a new multi-
purpose Progress dialog box component, and some other useful tools and
techniques. Happy multi-threading!

The files referenced in this article are available on the Delphi Informant
Magazine Complete Works CD in INFORM\00\NOV\DI200011NS.
30 November 2000 Delphi Informant Magazine
Nikolai Sklobovsky is a senior system analyst for Retail Technologies International,
house of RetailPro (http://www.retailpro.com), one of the world’s best POS sys-
tems, where he developed a sophisticated, yet easy-to-use, DSS (Decision Support
System) for OLAP analysis of merchant data. He has over 10 years of experience in
applied mathematics and teaching at the university level, as well as over 10 years
of experience in IT. You can contact Nik at delphi@sklobovsky.com or at his Web
site at http://www.sklobovsky.com.

http://www.retailpro.com
http://www.sklobovsky.com

F

In Development
Progressive Features

However important the OnStart, OnFinish, OnClose, OnCancel, and OnTimer event handlers are, you’ll find that it’s possible to keep them all
unassigned and still have a very useful progress dialog box component. While their use is highly application-specific, it’s altogether possible
to provide some rules of thumb for each.

— Nikolai Sklobovsky

Feature Explanation

procedure Start One of the more important methods. Always call it when you want the dialog box to be shown. It
initializes the internal log component and displays the dialog box.

procedure Finish The opposite of its companion Start, you may never call this method. All it does is call the internal
log’s Finalize method. As long as the dialog box keeps AutoFinalize equal to True (unless you change
it to False for some better reason), the need for Finalize, and, Finish is negligible. This method exists
mostly for symmetry/aesthetic purposes.

procedure Journal These two overloaded methods allow you to “log” a bunch of lines of text to the dialog box’s journal
in a single call. They’re only wrappers to the relevant internal log’s methods.

procedure CloseDialog As it says in the inline comment, you would only need to call this manually when you have the
CloseOnFinish property set to False.

property Client This important property is a shortcut to the dialog box’s internal log’s client. This gives you an entry
point to all of the goodies we learned to use here.

property Form Although these properties basically provide full access to their targets, it’s important that you never
property Log modify these objects’ event handlers, or other important properties. Rule of thumb: It’s safe to use

them in read-only mode, and you should think thrice before changing anything you’re not sure of.
property FileName These two properties serve as safe wrappers to the log’s filing properties and help you deal with
property FileMode the log file.
property DetailsMode This property allows you to specify the desired details level. The first (default) option allows the end
(addUser, addNone, user to show or hide the journal with the help of the Details button. The other two hide this controlling
or addAlways) button and freeze the dialog box in either detail-less or detailed mode.
property CancelMode Similar to DetailsMode, this property provides you with a one-touch way of configuring the dialog
(adcAsk, adcDontAsk, box’s behavior, versus a possible canceling action. The first two options are pretty obvious. The third
adcNone, or adcCustom) one eliminates the possibility of closing this dialog box for the end-user. The fourth option provides

programmers with ultimate control, but in this case, you would have to handle the OnCancel
event yourself.

property TimeMode These two properties should be familiar to the log’s user. They are, in essence, write-safe wrappers
property UsePumping for the internal log’s similar properties.
property Modal This important property provides you with modal-like dialog box behavior (Task List routines are

used again).
property OneLevel By default, the dialog box would display two progress bars. If you have or need only one level of

nesting, you may want to set this property to True.
property CloseOnFinish This property controls auto closing. If you don’t care about letting the end user study the journal

details before closing the dialog box, simply go ahead and set this property to True. You’ll save
your user one click.

property Caption This is basically a Form.Caption. It’s just a little bit smarter, and displays some default text, even if
you set it to an empty string.

property AutoScrollDetails Whether you want the dialog box’s journal to automatically scroll down on acquiring new data, or
you want it to stand still, this property gives you a fair chance to create the proper effect. If you
study the code, you’ll see that its scrolling part is smart enough to not scroll if a user decided to
investigate some part of the journal. If it detects any user activity, it suspends scrolling for 10 seconds
and resumes it only if the user didn’t do anything to the journal during this time.

property OnStart Fired after the dialog box is shown.
property OnFinish Fired when the dialog box’s log has been finalized and its internal timer has been stopped. It means

no more new data is expected as long as all of the business processes cease to run.
property OnClose Similar to OnFinish, but it’s fired a little bit later, namely when a dialog box has been closed. If you

have CloseOnFinish set to True, you would probably use only one of these two events.
property OnCancel May only be fired if you set the CancelMode property to adcCustom. In this case, you’ll be given a

chance to consult with the other parts of your application or with your end user, and then modify
the Continue parameter as you decide.

property OnTimer Provides you with a decent way to do something else. Normally, you would leave this event handler
unassigned, but in case you do some system tray programming, it may come in handy.

igure A: Specific features of the Progress dialog box.
31 November 2000 Delphi Informant Magazine

3

In Development
Begin Listing One — TDisplayForm
constructor TDisplayForm.Create;
begin
 inherited Create(Application);
 Position := poScreenCenter;
 BorderStyle := bsNone;
 FPanel := TPanel.Create(Self);
 FPanel.Parent := Self;
 FPanel.BevelWidth := 2;
 FPanel.Align := alClient;
 FDoNotDecreaseAutoWidth := True;
 KeyPreview := True;
 OnKeyPress := FormKeyPress;
end;

procedure TDisplayForm.SetMessage(const csMessage: string;
 bAutoSize: Boolean);
const
 csDelta = 'WWWWWWWW';
var
 w, wDelta: Integer;
begin
 FPanel.Caption := csMessage;
 if bAutoSize then begin
 w := Canvas.TextWidth(csMessage);
 wDelta := Canvas.TextWidth(csDelta);
 w := ((w + wDelta + pred(wDelta)) div wDelta) * wDelta;
 if (w > Width) or not FDoNotDecreaseAutoWidth then
 SetBounds(0 + ((Screen.Width - w) div 2),
 0 + ((Screen.Height - Height) div 2),
 w, Height);
 end;
 if FPumpOnUpdate then
 Application.ProcessMessages
 else
 Repaint;
end;

procedure TDisplayForm.DoShow;
begin
 inherited DoShow;
 FTaskList := DisableTaskWindows(Handle);
 FCursor := Screen.Cursor;
 Screen.Cursor := crHourGlass;
end;

procedure TDisplayForm.DoHide;
begin
 EnableTaskWindows(FTaskList); // Works with nil okay.
 Screen.Cursor := FCursor;
 inherited DoHide;
end;

procedure TDisplayForm.FormKeyPress(Sender: TObject;
 var Key: Char);
begin
 if Key = #27 then // User hit [Esc] key.
 Cancelled := True;
end;

function CreateDisplayForm(const csMessage: string;
 iWidth, iHeight: Integer): TDisplayForm;
begin
 Result := TDisplayForm.Create;
 Result.Height := iHeight;
 if iWidth > 0 then
 Result.Width := iWidth;
 Result.SetMessage(csMessage, iWidth <= 0);
 Result.Show;
 Result.Update;
end;

End Listing One
2 November 2000 Delphi Informant Magazine
Begin Listing Two — TDataRecordType
 TDataRecordType = (drtName, drtAddr1, drtAddr2,
 drtCityStateZip, drtPhoneFax);
 TDataRecordTypeArray = array of TDataRecordType;

 TDataRecord = record
 case RecType: TDataRecordType of
 drtName:
 (First, Last: string[16]);
 drtAddr1:
 (Street: string[30]; Apt: Integer);
 drtAddr2:
 (Addr2: string[30]);
 drtCityStateZip:
 (City: string[20]; State: string[2]; ZIP: string[5]);
 drtPhoneFax:
 (Area: string[3]; Phone: string[7];
 Ext: string[4]; Fax: string[7]);
 end;
 PTDataRecord = ^TDataRecord;

 TDataFile = file of TDataRecord;
 private // Part of the form.
 FForm: TDisplayForm;
 FMessage: string;
 FTypes: TDataRecordTypeArray;
 FAllowCancel: Boolean;
 procedure OpenDataFile(const csFileName: string);

resourcestring
 rsRecords_II = 'Record processed: %d out of %d';

procedure TfrmMain.Open1Click(Sender: TObject);
begin
 if OpenDiaFLog2Execute then
 OpenDataFile(OpenDiaFLog2FileName)
end;

procedure TfrmMain.OpenDataFile(const csFileName: string);
begin
 FLog1Initialize;
 try
 FAllowCancel := False;
 FTypes := ReadDataTypes(csFileName, FLog1Client);
 finally
 FLog1Finalize;
 end;
end;

function ReadDataTypes(const csFileName: string;
 LogClient: TCustomActivityLogClient = nil):
 TDataRecordTypeArray;
var
 i, iCount: Integer;
 data: TDataRecord;
 datafile: TDataFile;
 x: TDataRecordTypeArray;
begin
 Assign(dataf ile, csFileName);
 Reset(dataf ile);
 iCount := FileSize(dataf ile);
 LogClient.Start(csFileName, cbProgress);
 SetLength(x, iCount);
 try
 for i := 0 to pred(iCount) do begin
 if i mod 100 = 0 then
 LogClient.Report(i, iCount,
 Format(rsRecords_II, [i, iCount]));
 Read(dataf ile, data);
 x[i] := data.RecType;
 end;
 Close(dataf ile);
 Result := x;
 f inally
 LogClient.Finish;
 end;
end;

End Listing Two

33 November 2000 Delphi Informant Magazin

New & Used

By Bill Todd

Figure 1: The VMware startup dia
VMware 2.0
Multiplatform Testing on a Single Machine

Would you like to develop and test your applications using Delphi for Windows and
Delphi for Linux at the same time on the same computer? With VMware 2.0 from

VMware, Inc., it’s easy. VMware takes advantage of the virtual machine architecture of
Intel Pentium II (and higher) chips to let you run multiple operating systems simultaneously.
You can install VMware on a computer running
NT 4 Server or Workstation, or Windows 2000
Professional, Server, or Advanced Server. You can
also install VMware on a machine running Linux.
Once VMware is installed, you can create as many
virtual machines as you wish, and install a different
operating system on each machine.

Creating a Virtual Machine
Upon starting VMware, the dialog box in Figure 1
appears. This dialog box allows you to choose to
create a new virtual machine using the Configura-
tion Wizard, open the Configuration Editor, open
an existing configuration, or choose a configura-
tion from the most-recently-used list. The best way
to create a virtual machine is with the wizard.

When you create a new virtual machine with the
wizard, the first step is to choose the operating system
for the new virtual machine from the list shown
in Figure 2. Next, the wizard asks for the path to
the directory that will host the new virtual machine.
You can place this directory on a local hard drive, a
removable hard disk, or a network file server.

The third step requires you to specify how to
create a disk drive for the new virtual machine.

Although you can use an unused disk
partition, the best choice is to create
a virtual disk drive. A virtual drive is
a file in the directory you specified in
the preceding step. You can specify a
maximum size for the virtual disk of
up to 2GB. It’s best to use the 2GB
maximum because you can’t change
the maximum size after the disk has
been created. Although the virtual disk
appears to be its maximum size to the
virtual machine’s operating system, the
file that hosts the virtual disk starts
small and grows as files are added to
the virtual disk. If you later delete files
from the virtual disk, you can shrink log box.
e

it to recover the space on the host operating
system’s hard drive. Although the maximum size
of a virtual disk is limited, you can add more
disks any time after creating the virtual machine.

The wizard continues by asking if you want
the virtual machine to start with the computer’s
floppy drive and CD-ROM connected to the
virtual machine, and what kind of networking
you want to use, if any. You can choose host-
only networking if your computer is not on a
network and you want the guest and host oper-
ating systems to be networked. If you’re on a
LAN, choose bridged networking to make both
the host and guest operating systems available on
the network.

After you’ve clicked the wizard’s Finish button,
you’ll find yourself in the virtual machine’s
window, as shown in Figure 3. At this point,
it’s a good idea to open the Configuration
Editor, as shown in Figure 4, and make any
necessary changes to the virtual machine before
you install the operating system. You’ll probably
want to increase the amount of memory because
VMware’s defaults are quite conservative. When I
created a virtual machine for Linux, the default
memory size was 48KB, when in fact 64KB is
a more realistic number to get reasonable per-
formance. You may need more, depending on
the applications you will run. While the VMware
literature says that the minimum memory you
must have installed on your PC is 96MB, that is
likely not enough. For example, if you’re going to
run Windows 2000 Professional and Linux, you
should plan on at least 96MB for Windows and
64MB for Linux, so a system with 192MB or
more would be a good choice.

Also, the wizard configures only those devices you
need to install and boot an operating system.
While the wizard defaults to automatically con-
nect your CD-ROM and floppy drives to the

New & Used
virtual machine, it does not automatically connect your parallel
port, serial ports, or sound card. If you want these devices con-
nected when your virtual machine starts, you’ll need to change their
settings in the Configuration Editor.
34 November 2000 Delphi Informant Magazine

Figure 2: Choosing an operating system for the new virtual
machine.

Figure 3: After completing the wizard, you end up in the virtual
machine’s window.

Figure 4: The Configuration Editor.
Installing the Operating System
Before you install the operating system on your virtual machine,
you may want to take a trip to VMware’s Web site. In my first
attempt to install Corel Linux, I had some problems. After visiting
the Web site and searching for “Corel,” I immediately found
step-by-step instructions for installing Corel Linux. With those in
hand, my second attempt went smoothly.

Installing the operating system on a virtual machine is no differ-
ent than installing it on a physical computer: Put the floppy disk
or CD-ROM in the drive, and click the Power On button on
the VMware toolbar to start the virtual machine’s boot process.
Although the computer I tested on was not set up to boot from
its CD-ROM drive, I was pleased to discover that the virtual
machine would boot from the CD-ROM so I didn’t need a boot
disk to install Linux.

Running a Virtual Machine
You can run a virtual machine in a window or switch to full screen
mode. Because I was running the virtual machine at the maximum
resolution of my monitor, I found full screen mode much easier to
work in. Running in a window meant that part of my Linux desktop
was not visible, and I found it annoying to use the scroll bars to
bring the hidden part into view. You can switch from full screen to
window mode quickly by pressing CAE. Figure 5 shows the
Corel Linux desktop running in a window.
Figure 5: The Corel Linux desktop running in a window.

If you develop, test, or provide support for multiple operating
systems, this is the ideal way to do it. VMware 2.0 is easy to
install, configure, and use. It simply works.

VMware, Inc.
3145 Porter Drive, Bldg. F
Palo Alto, CA 94304

Phone: (650) 475-5000
Web Site: http://www.vmware.com
Price: VMware 2.0 for Windows NT and Windows 2000, or
VMware for Linux, US$299 (prices are for electronic distribu-
tion); US$329 for packaged distribution (includes SuSE Linux
6.3 and TurboLinux 6.0).

http://www.vmware.com

New & Used
Because the guest and host operating systems run simultaneously,
VMware lets you change the priority of the guest operating system
any time you wish. You may also choose to give the guest operat-
ing system a higher priority when it has focus, and a lower one
when it does not. Another great feature is the ability to suspend a
virtual machine to disk or memory at any time. You can suspend
to disk in the middle of a compile, shut down VMware, turn off
the computer, and later restart your virtual machine exactly where
you left it.

VMware also gives you impressive control over what happens on the
virtual machine’s disks. You can choose non-persistent mode, where
changes to files are discarded at the end of the session; undoable
mode, where you can choose to save or discard any changes at
the end of the session; or persistent mode, where the disk behaves
normally and all changes are permanent.

Conclusion
VMware is cheaper than multiple computers and more convenient
and flexible than dual boot. If you have to develop, test, or provide
support under multiple operating systems, this is the ideal way to do
it. It’s easy to install, configure, and use. And once you have it set
up, it simply works. ∆

Bill Todd is president of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is co-author of four database program-
ming books, author of more than 60 articles, a Contributing Editor to Delphi
Informant Magazine, and a member of Team Borland, providing technical support
on the Borland Internet newsgroups. He is a frequent speaker at Borland Developer
Conferences in the US and Europe. Bill is also a nationally known trainer and
has taught Delphi programming classes across the country and overseas. He is
currently a speaker on the Delphi Development Seminars Kylix World Tour. Bill can
be reached at bill@dbginc.com. For more information on the Kylix World Tour,
visit http://www.DelphiDevelopmentSeminars.com.
35 November 2000 Delphi Informant Magazine

http://www.DelphiDevelopmentSeminars.com

36 November 2000 Delphi Informant Magazin

New & Used

By Warren Rachele

Figure 1: The Form Policy dialog b
UIL Security System 2.0
Delphi Components Provide Readymade Security

System security is ubiquitous in the current era of networked computing. Most access
control is governed through the user’s login to either the local area network or inter-

networked servers. For many applications, this top-level security is more than sufficient,
but occasionally, you’ll need component-level security within an application.

For example, users with differing security levels
within an application may be able to open existing
files, but not have the ability to create new ones.
Higher levels may be able to create files, but not
delete them. To implement this variety of access con-
trol, the application must maintain a database of user
logins and their associated component permissions.

The UIL Security System, from Unlimited Intelli-
gence Ltd., adds easy-to-use and powerful end-user
security to your Delphi programs. Integrating the
UIL components into a Delphi program lets you
control access to components on the basis of a user
login. While programming these features isn’t dif-
ficult, it’s time-consuming. When you compare hand-
programming the security you need with the elegance
of dropping in the UIL components and setting a few
properties, this system will win every time.

UIL Security System’s four components integrate
with the Delphi code base. The core component
is TuilSecurityManager, a required control through
which the other controls connect to the security
database. The security manager tracks who is logged
in and the access permissions assigned to them.
The six tables that provide the data-management
element of the security system are also bound to the
program through this component and their associ-
ated data source controls.

The TuilFormPolicy component main-
tains all of the permission policies a
form contains, and the action to be
taken on a call to the policy. The action
is determined by the association of
components with a named policy. The
user gains access to the components
by having the appropriate permission
policy assigned to his/her login.
TuilFormPolicy is connected directly to
a security manager component, and
most of its functionality is used at
design time.ox.
e

The other pair of components are visual controls
that provide a user interface into the security func-
tions. TuilLoginDlg is a dialog box that hooks
directly to the security manager. It provides a simple
method for collecting the user name and password,
and feeds them into the UIL system. TuilSecurityDlg
is used to simplify access to the security settings
(policies) for the end user at run time.

Installation
Installing the UIL Security System is strictly a manual
affair. The components and supporting tables are pro-
vided in the form of a zip archive file, which is
unzipped into the folder that will hold the units, etc.
This may be a product-specific folder or a Delphi
folder defined in the library path. Before adding the
components to the VCL, you must compile a version-
specific run-time package. In Delphi 5, open and
compile uSec2050.dpk. (The product provides files
for Delphi 3, 4, and 5.) Once this step has been com-
pleted, the design-time package is installed, adding
the components to the VCL on a new “UIL” tab.

While it’s not mentioned in the documentation,
you must ensure that the units for the components
can be found on Delphi’s library path. If not,
your projects will fail at compilation time. If you
installed the files in a folder outside of the main
Delphi folders, be sure to add the folder to the
library path, found under the Tools | Environment

Options menu of the Delphi IDE.

Using UIL Security System
Putting the pieces together within a Delphi project is
a simple matter once you understand the system. The
process is started by dropping a TuilSecurityManager
component onto a form. Notice in the Property
Inspector that the properties are in three “bindaries.”
These will reference the tables added in the next step.

When using the BDE by default, along with the
native Data Access components, all the security data
is maintained in a set of Paradox tables, although the

37 November 2000 Delphi Informant Magazine

New & Used

Figure 2: The Edit Permissions dialog box. Figure 4: The Groups tab of the Edit Permissions dialog box.

Figure 5: The Membership tab of the Edit Permissions dialog box.
Figure 3: Logging in as Warren.
UIL Security System
can use tables managed
by other database sys-
tems supported by
Delphi. The Paradox
relations are supplied
with the product, but
the structures aren’t
documented. Be sure to
distribute a clean set of
tables with your proj-
ect, so make a backup
before you experiment.

Next, add six Table and
six DataSource compo-
nents to the form. The

ts will be the folder

database alias for each of the Table componen
in which you installed the UIL database tables. Each of the Table
components will be associated with a table in the database. Each of
the DataSource components will be associated with a Table. Add these
table associations to the Bindary properties of TuilSecurityManager.

A step that isn’t mentioned in the documentation is setting the master-
detail relationships between the tables. This is critical to the proper
operation of the system. To demonstrate the use of the product, I lined
up three buttons on the form, captioning them Basic, Advanced, and
Admin. Finally, a TuilFormPolicy component was added to the form.

This last component is used to set the security policies you want to
apply to users. Figure 1 shows the Form Policy dialog box, through
which you’ll create the policies and then group components within
them. This is accessible by double-clicking on the TuilFormPolicy
component. I’ve added three policies that will encompass all of these
controls, and give users various degrees of access based on their
experience. For example, after establishing the Basic policy, I’ve added
btnBasic to it. UIL Security will correlate this policy to the user login,
and allow access to only those components allowed under the policy.

To enable login verification, I’ve added TuilLoginDlg to the project
and tied it to the OnCreate method of the form. This will verify
user login before access is allowed. Also added is the last component,
TuilSecurityDlg. When this component is executed, the dialog box
shown in Figure 2 is presented. Here the user’s logins are associated with
the policies created earlier. This dialog box can also be accessed at design
time by double-clicking on the TuilSecurityManager component.
Figure 3 shows the results of logging in as Warren. Warren has Basic
and Advanced access, which lets him use the btnBasic and btnAdvanced
components. The design for assignment of the permissions has a subtle
twist. In reviewing the samples and documentation, it appeared that the
controls to which you would want to grant access through a permission
should be grouped under that permission; for example, if you wanted
to grant Warren access to both the Basic and Advanced buttons. My
inclination was to group these controls under the Advanced permission.
But this is not how the product is designed, and it would lead to
inconsistent results. The proper way to grant these permissions is to
provide Warren with both Basic and Advanced permission, which grants
access to the appropriate controls. The author of the product was very
patient and helpful in making this clear to me.

Groups
Using groups to manage users is the only way to go. Rather than labori-
ously adding individual permissions to single users as they are added
to the database, UIL Security System lets you assign permissions to a
named group, and then add or remove users to and from those groups.
Figure 4 shows the Edit Permissions dialog box with the Groups tab
selected. Two groups have been created — Red and Blue — and access
to the appropriate buttons has been assigned to the group. The “Red”
buttons have all been assigned to the Red group. This gives all members
of the Red group access to the group’s permissions.

The Membership tab of the same dialog box is shown in Figure 5. You
add users to the groups through this dialog box. The Red group now
includes users Warren and David. Using the group features does not

New & Used
preclude you from using the individual user access control to refine
your security. In this example, the Admin user is assigned sole access
to the btnAdmin component.

Documentation
Documentation is the weak link. There’s a README.TXT file, which
provides installation and product notes, and a standard Windows Help
file. Otherwise, there is no documentation. Within the Help file, there
is a brief description of each of the components and the properties
and methods of each, but few examples. The Help file provides a short
tutorial, but many key requirements are missing. The product’s developer
is helpful in resolving most issues through his Web site. He also offers
usage instructions when the design isn’t clear. This will work on a limited
scale of distribution, but it will cause problems if the product becomes
popular. The developer should focus on this before adding features.

Conclusion
UIL Security System 2.0 is a niche product that provides a conve-
nient way of implementing component-level security in your Delphi
programs. Its four components are well constructed and designed,
and work without problem once all of the appropriate settings are
discovered. The convenience of this drop-in solution allows you to
focus on other aspects of your project. ∆

UIL Security System 2.0 is a niche component set that provides a
convenient way of implementing component-level security in Delphi
programs. Although poorly documented, the convenience of this
well-designed drop-in security solution will allow you to focus on
other aspects of your projects.

Unlimited Intelligence Ltd.
#9-552 Church Street
Toronto, ON, M4Y 2E3
Canada

E-Mail: info@uil.net
Web Site: http://www.uil.net
Price: US$199 for product and source.

Warren Rachele is Chief Architect of The Hunter Group, an Evergreen, CO software-
development company specializing in database-management software. The com-
pany has served its customers since 1987. Warren also teaches programming,
hardware architecture, and database management at the college level. He can be
reached by e-mail at wrachele@earthlink.net.
38 November 2000 Delphi Informant Magazine

http://www.uil.net

Best Practices
Directions / Commentary
Code Analyst

There are many tools available to analyze your code for potential memory leaks, etc. But what about analyzing the
writer of the code? This may be a bit too complex to automate, but it can be done “manually” as I’m about to prove.

Your code — what you write and how you write it — reveals much about your inner self. It’s an indicator of habits and
personality traits, at least as much so as handwriting.
e
t

Let’s analyze some code samples I’ve picked up over the years (never
mind what this says about me). Where necessary, user-defined class
names and file names have been altered to protect the disturbed.

Our first example:

procedure TkeuDBMemo.DoEnter;
begin
 inherited DoEnter;
 enterCount := Lines.Count;
 enterStringList := TStringList.Create;
 try
 if enterCount > 0 then
 enterStringList.AddStrings (Lines);
 except
 enterStringList.Free;
 enterStringList := nil;
 raise;
 end;
end;

This programmer is self-conscious, introverted, even sneaky. Look at th
indention. One measly space! He (although it is reportedly not true tha
all wackos are male, for sake of convenience I will refer to the patients
... er ... coders as male) wants to attract as little attention as possible. He
probably speaks in a barely audible voice, walks with mincing steps, and
is startled by rodents. And what happens to the StringList if there’s no
exception? It isn’t freed! He must be into bondage as well. This person is
high strung, lives alone (and likes it), and drives a Ford Pinto.

On to our next victim ... I mean subject:

function ReadBtjIniFile(
 Section, Identif ier : String) : String;
var
 IniResult,pSect,pIdent : PChar;
begin
 IniResult := StrAlloc(256);
 pSect := StrAlloc(Length(Section) + 1);
 pIdent := StrAlloc(Length(Identif ier) + 1);
 StrPCopy(pSect,Section);
 StrPCopy(pIdent,Identif ier);
 GetPrivateProf ileString(
 pSect,pIdent,'',IniResult,255,'.\BTJSOFT.INI');
 if (StrLen(IniResult) = 0) then
 GetPrivateProf ileString(
 pSect,pIdent,'',IniResult,255,'..\BTJSOFT.INI');
 Result := StrPas(IniResult);
 StrDispose(pIdent);
 StrDispose(pSect);
 StrDispose(IniResult);
end;
39 November 2000 Delphi Informant Magazine
This is sad — a clear indication of a troubled psyche. The man is
resting on his laurels. He’s not completely lacking in programming
knowledge, but has not bothered to learn Delphi’s implementation
of Object Pascal. Instead of using the TRegIniFile class, PChars are
used with dynamic memory allocation. Worse — and similar to the
first example — are the potential resource leaks. Look at all those
StrAllocs without try..finally blocks. This coder is haughty, “I’ll do it
my way. I don’t need no stinking TRegIniFile”; lazy, “This worked for
me in the 70s. Why should I change now?”; and reckless, “What are
the chances of a problem between memory allocation and dealloca-
tion?” This person is grossly overweight, sports an unkempt beard,
eats pizza and Oreos exclusively, and drives a Chevy Citation.

Here’s another:

...
end;
function TFomrMaintainanceRunWizard.DoImportSQL(
 Page: TWizardPage; Step: TScriptStep): Integer;

var
SourceFields: TStringList;
DestFields: TStringList;
SourceMasterFields: TStringList;
DestMasterFields : TStringList;
Query: TQuery;

function ExecuteUpdateQuery : Boolean;
var i : Integer;
begin
{ code removed }
end;

var DestinationQuery: TQuery;
var DataBase: TDataBase;
var i: Integer;
var ResultLabel: TLMDLabel;
var RecordsRead: Integer;

begin
...

This person should be institutionalized. He leaves no space
between methods, yet adds a space between the function header
and variable declarations. He sandwiches a nested function
between the local variable declarations, and fails to indent the
nested function. Not only that, the var keyword is explicitly stated
for every variable declared. This is not only unnecessary, because
these declarations resemble reference parameters passed to the
function, but they could cause confusion for programmers forced
to maintain this stuff. To beat a dead horse, he’s also careless

(notice the typo of “form” in the class name) and can’t spell, e.g.

Best Practices
“Maintainance.” You would hate to see his bedroom: Socks are
draped over the bedpost and underwear hangs from the lamp. He
bangs R like a madman when his program hangs, and drives
a “kit car” with a lawnmower engine.

We’ll end on a positive note:

class procedure TAboutForm.Cre8Yourself;
begin
 with TAboutForm.Create(nil) do
 try
 ShowModal;
 finally
 Free;
 end;
end;

This guy knows his stuff; the code is tight and elegant. He uses a
class procedure and a with statement — during the creation of the
form, to boot. On the other hand, naming the procedure Cre8Yourself
is a little on the cute side. Nevertheless, this person is well adjusted,
exemplary in every way, humble, has a good sense of humor, and
drives a Plymouth PT Cruiser.

The doctor is in. Fork over a code sample and lie back on the couch. ∆

— Clay Shannon

Clay Shannon is an independent Delphi consultant based in northern Idaho. He is
available for Delphi consulting work in the greater Spokane/Coeur d’Alene areas,
remote development (no job too small!), and short-term or part-time assignments
in other locales. Clay is a certified Delphi 5 developer, and is the author of Develop-
er’s Guide to Delphi Troubleshooting [Wordware, 1999]. You can reach him at
BClayShannon@aol.com.
40 November 2000 Delphi Informant Magazine

File | New
Directions / Commentary
Delphi Book Wrap-up 2000

Perhaps you expected “Delphi 5 Book Wrap-up?” This year, however, we’ve witnessed a continuing trend in Delphi
titles: Most have abandoned the notion of identifying themselves with a particular version of Delphi. The exception,

of course, is the latest editions of the two perennial favorites I reviewed earlier this year. I will begin this column
by taking another look at those classics. I will then discuss five new works of great merit that cover the spectrum of
Delphi topics and levels. Finally, I will suggest an “Essential Delphi Library of Advanced Works” with books that go
back as far as Delphi 2.
The Classics. I’m sure that most readers can guess the titles of the
two Delphi classics. If not, let me give you a couple of hints: Which
two Delphi books have had editions for almost every new version of
Delphi? Which two books consistently top the annual reader’s poll?
Of course, I’m talking about Mastering Delphi 5 by Marco Cantù
[SYBEX, ISBN: 0-7821-2565-4] and Delphi 5 Developer’s Guide by
Steve Teixeira and Xavier Pacheco [SAMS, ISBN: 0-672-31781-8].
Because I reviewed both of these outstanding works this year, I will
limit my remarks here to a brief summary of each, and a comparison.

Of the two, I feel that Cantù’s work is better suited for the less-experi-
enced developer. The author carefully explains many basic principles
and techniques. Beginning with a tour of Delphi’s IDE, providing
an introduction to Object Pascal, and exposing the VCL, he provides
a solid foundation for working in Delphi. He goes on to expose
more advanced topics, including a wonderful exposition of one of my
favorites — dynamic-link libraries.

Steve Teixeira and Xavier Pacheco take a similar approach, beginning
with an introduction to basic issues like the Object Pascal language.
The authors go beyond Delphi fundamentals, however, with a chap-
ter on “Application Frameworks and Design Concepts” — an excel-
lent introduction to good programming practice. Both books cover
all essential topics, including working with components and database
programming. Developer’s Guide emphasizes the latter topic, devoting
the final third of the book to database and client/server programming.
Both works also cover a fair amount of advanced topics, including
component writing and technologies like ActiveX.

The Class of 1999-2000. There’s no author whose works are more
eagerly anticipated than Ray Lischner’s, so it’s no wonder I’ve
included his two previous works in the “Essential Delphi Library.”
His latest, Delphi In a Nutshell [O’Reilly, ISBN: 1-56592-659-5], is
no less than an in-depth exploration of the very heart of Delphi —
Object Pascal — with all of the powerful extensions that make Delphi
the Cadillac of programming languages. At its heart is a lengthy
chapter that includes every type, variable, function, procedure, etc.
that is part of Delphi’s underlying language and system units. I
predict this book will become an essential reference for every Delphi
developer who adds it to his or her library.
41 November 2000 Delphi Informant Magazine
The Tomes of Delphi: Win32 Database Developer’s Guide by Warren
Rachele [Wordware, ISBN: 1-55622-663-2] is one of the few Delphi
books devoted exclusively to this essential discipline. What sets this
work apart from other works that deal with database topics is its
in-depth discussion of the Borland Database Engine (BDE). In an
early chapter, Rachele outlines the basic architecture of the BDE, and
later provides an overview of the functions. The author also covers the
essential topics of SQL, data-access and data-aware components, and
database tasks, including preparing reports and printing.

At the other end of the spectrum of specialized Delphi books is
John Ayres’ new work, Delphi Graphics and Game Programming
Exposed! with DirectX [Wordware, ISBN: 1-55622-637-3]. Appropri-
ately, Ayres begins with an introduction to game programming in
general, followed by an exposition of techniques. After that, the real
fun begins. Using Erik Unger’s Project JEDI DirectX header conver-
sion as a foundation, he treats the reader to a first-rate explanation on
using this vital technology in game programming.

The next book was something of an afterthought for me. I wanted
to examine all of the new Delphi books, and having seen (but not
read) a review of it in Delphi Informant Magazine, I requested a copy.
I expected to spend a couple of hours skimming it to assess its style
and content. What I didn’t expect was spending an entire evening and
a good portion of the next morning completely captivated by Eric
Harmon’s Delphi COM Programming [Macmillan Technical Publishing,
ISBN: 1-57870-221-6]. Harmon has a wonderful writing style, using
just the right amount of repetition to expose this fundamental technol-
ogy. He carefully explains the similarities and subtle differences between
interfaces and objects, shows how to build and implement interfaces,
and provides an example of multiple interfaces within a single class
— all within the first 50 pages! Having established a solid understand-
ing of interfaces, he goes on to discuss different kinds of COM
servers, creating ActiveX controls, and other related technologies, with a
plethora of excellent code examples and wonderful tips.

The final book in the new crop is a bit unusual for me. It’s a
book for beginners. Maybe I’m an elitist, but I’ll certainly admit
to an enjoyment of going off the beaten path. Nevertheless, I
like Discover Delphi [Addison-Wesley, ISBN: 0-201-34286-3] by

File | New
Shirley Williams and Sue Walmsley. In fact, if I ever teach a course
for beginning programmers with Delphi, this will be my text. It
assumes very little background besides a familiarity with basic com-
puting. It presents all of the basic topics cogently, with sufficient
detail and code examples to meet the needs of novice programmers.

Oldies but Goodies: An Essential Delphi Library of Advanced
Works. Many of the books I’ll discuss in this section are out-of-print
and difficult to find. Nevertheless, I would recommend adding any
or all of them to your library. If you write experts, or work in
other ways with Delphi internals (e.g. RTTI), then you need both of
Ray Lischner’s early books, Secrets of Delphi 2 [Waite Group, ISBN:
1-57169-026-3] and Hidden Paths of Delphi 3 [Informant Press,
ISBN: 0-9657366-0-1]. The first deals with a variety of advanced
topics, and the second concentrates on the Open Tools API. If you
write components, Ray Konopka’s seminal treatise on this discipline,
Developing Custom Delphi 3 Components [Coriolis, ISBN: 1-88357-
747-0] is the fundamental book you must include in your library. Also
be sure to keep an eye open for Danny Thorpe’s Delphi Component
Design [Addison-Wesley, ISBN: 0-201-46136-6], an insightful work
by one of Delphi’s best-known architects.

If you’re working with Delphi at the API level, you should own each
of the first two volumes of the Tomes of Delphi 3 series by John Ayres,
et al.: Win32 Core API [Wordware, ISBN: 1-55622-556-3] and
Win32 Graphical API [Wordware, ISBN: 1-55622-610-1]. If you’re
looking for an advanced work that covers a multitude of topics from
memory management to hacking the Delphi environment, take a
look at Delphi Developer’s Handbook [SYBEX, ISBN: 0-7821-1987-5]
by Marco Cantù, Tim Gooch, and John Lam.

I have reviewed most of these books, so be sure to check your old
issues of Delphi Informant Magazine. Of course, all of this maga-
zine’s book reviews are available at http://www.DelphiZine.com.
Until next time ... ∆

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at Kentucky State University, specializing
in music composition and music theory. He has been developing education-
related applications with the Borland languages for more than 10 years. He
has published a number of articles in various technical journals. Using Delphi,
he specializes in writing custom components and implementing multimedia
capabilities in applications, particularly sound and music. You can reach Alan on
the Internet at acmdoc@aol.com.
42 November 2000 Delphi Informant Magazine

http://www.DelphiZine.com

	Table of Contents
	Delphi Tools
	Tenon Announces iTools for Linux
	Paradigma Announces Valentina COM
	ProWorks Releases Flipper CAD Control 2.5
	InstallShield Unveils InstallTuner for Windows Installer
	VideoSoft Announces VSVIEW 7.0
	Starbase Announces StarTeam Web Edition
	Marotz Offers ASP Express
	devSoft Ships IP*Works!SSL V4
	Mele Systems/Youseful.com Introduces YOUSEFUL 5.1
	Kinook Releases Visual Build 2.0

	Delphi News
	Inprise/Borland CEO Unveils Macintosh Support
	Inprise/Borland Introduces InterBase 6.0
	Inprise/Borland Offers Fast Path to Creating E-commerce Sites
	Inprise/Borland Announces Results of Its 2000 Annual Meeting
	Inprise/Borland ’s InterBase Ships with Cobalt Networks Server Appliance

	OP Tech
	Moving Data via COM
	Passing Tabular Data
	Passing Flat-file Data
	Sending a File You Don ’t Want to Display
	Sending Arrays or Other Memory Structures
	Conclusion

	On Language
	Polymorphic Programming
	Breaking the Protected Barrier
	Using Run-time Type Information
	Using Windows Messaging
	Conclusion

	On the ’Net
	XSL Transformations
	Template and Patterns
	Text Content
	Building Document Structure
	Loops
	Conditional Processing
	XSLT Sample
	Applying Transformations
	Conclusion
	References

	Columns &Rows
	A Practical Guide to ADO Extensions
	OLAP and Data Warehousing in Brief
	ADO MD Objects
	Objects for Retrieving Metadata
	Objects for Retrieving Data
	Creating a Simple OLAP Manager
	Conclusion
	Begin Listing One — TreeView1MouseDown
	Begin Listing Two — CDSFill

	In Development
	Children of Threadmare
	Table of Contents
	Auxiliary Tools
	Displaying Loading Info
	Generating Data
	Finding Text/Data
	Background Processing
	Progress Dialog Box
	Conclusion
	Progressive Features
	Begin Listing One —TDisplayForm
	Begin Listing Two —TDataRecordType

	New &Used
	VMware 2.0
	Creating a Virtual Machine
	Installing the Operating System
	Running a Virtual Machine
	Conclusion

	New &Used
	UIL Security System 2.0
	Installation
	Using UIL Security System
	Groups
	Documentation
	Conclusion

	Best Practices
	Code Analyst

	File |New

